氧空位诱导锂离子通路定向有序化,从而增强固体电解质的离子传导性

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hyeon-Ah Ju, Eun-Byeol Park, Jaejin Hwang, Young-Hoon Kim, Min-Hyoung Jung, Min-Ji Yang, Seon Je Kim, Jaehan Lee, In Kim, Yoo-Shin Kim, Songhun Yoon, Jae Hyuck Jang, Hu Young Jeong, Jaekwang Lee*, Jae-Hyun Shim* and Young-Min Kim*, 
{"title":"氧空位诱导锂离子通路定向有序化,从而增强固体电解质的离子传导性","authors":"Hyeon-Ah Ju,&nbsp;Eun-Byeol Park,&nbsp;Jaejin Hwang,&nbsp;Young-Hoon Kim,&nbsp;Min-Hyoung Jung,&nbsp;Min-Ji Yang,&nbsp;Seon Je Kim,&nbsp;Jaehan Lee,&nbsp;In Kim,&nbsp;Yoo-Shin Kim,&nbsp;Songhun Yoon,&nbsp;Jae Hyuck Jang,&nbsp;Hu Young Jeong,&nbsp;Jaekwang Lee*,&nbsp;Jae-Hyun Shim* and Young-Min Kim*,&nbsp;","doi":"10.1021/acsenergylett.4c0207810.1021/acsenergylett.4c02078","DOIUrl":null,"url":null,"abstract":"<p >Defects in perovskite oxide solid electrolytes (SEs) impact Li-ion conductivity. However, the role of oxygen vacancies (V<sub>o</sub>) in transport behavior has been less explored. Herein, our study elucidates the microscopic origin of the role of V<sub>o</sub> in enhancing the total ionic conductivity of a prototype lithium lanthanum titanate while maintaining its insulating properties. Scanning transmission electron microscopy and theoretical calculations reveal that the presence of V<sub>o</sub> significantly lowers the activation energy of Li-ion migration. The V<sub>o</sub> is revealed to be preferentially aligned parallel to <i>c</i>-planes and causes modulated lattice expansion in an alternating manner, resulting in easy directional Li-ion transport. The effect of V<sub>o</sub>-assisted Li-ion transport is optimized through the hierarchical rearrangement of structural features at multiple length scales close to the direction of the V<sub>o</sub> arrays. Our results offer novel insights into the microscopic origins of superior ion conductivity facilitated by V<sub>o</sub>, contributing to the design of high-performance SEs.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5606–5615 5606–5615"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen Vacancy-Induced Directional Ordering of Li-Ion Pathways for Enhanced Ion-Conducting Solid Electrolytes\",\"authors\":\"Hyeon-Ah Ju,&nbsp;Eun-Byeol Park,&nbsp;Jaejin Hwang,&nbsp;Young-Hoon Kim,&nbsp;Min-Hyoung Jung,&nbsp;Min-Ji Yang,&nbsp;Seon Je Kim,&nbsp;Jaehan Lee,&nbsp;In Kim,&nbsp;Yoo-Shin Kim,&nbsp;Songhun Yoon,&nbsp;Jae Hyuck Jang,&nbsp;Hu Young Jeong,&nbsp;Jaekwang Lee*,&nbsp;Jae-Hyun Shim* and Young-Min Kim*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.4c0207810.1021/acsenergylett.4c02078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Defects in perovskite oxide solid electrolytes (SEs) impact Li-ion conductivity. However, the role of oxygen vacancies (V<sub>o</sub>) in transport behavior has been less explored. Herein, our study elucidates the microscopic origin of the role of V<sub>o</sub> in enhancing the total ionic conductivity of a prototype lithium lanthanum titanate while maintaining its insulating properties. Scanning transmission electron microscopy and theoretical calculations reveal that the presence of V<sub>o</sub> significantly lowers the activation energy of Li-ion migration. The V<sub>o</sub> is revealed to be preferentially aligned parallel to <i>c</i>-planes and causes modulated lattice expansion in an alternating manner, resulting in easy directional Li-ion transport. The effect of V<sub>o</sub>-assisted Li-ion transport is optimized through the hierarchical rearrangement of structural features at multiple length scales close to the direction of the V<sub>o</sub> arrays. Our results offer novel insights into the microscopic origins of superior ion conductivity facilitated by V<sub>o</sub>, contributing to the design of high-performance SEs.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 11\",\"pages\":\"5606–5615 5606–5615\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02078\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02078","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

过氧化物固体电解质(SE)中的缺陷会影响锂离子的传导性。然而,人们对氧空位(Vo)在传输行为中的作用探索较少。在此,我们的研究阐明了氧空位在提高钛酸镧锂原型的总离子电导率的同时保持其绝缘性能的微观起源。扫描透射电子显微镜和理论计算显示,Vo 的存在显著降低了锂离子迁移的活化能。研究还发现,Vo 优先平行于 c 平面排列,并以交替的方式导致晶格调制膨胀,从而使锂离子易于定向传输。通过在靠近 Vo 阵列方向的多个长度尺度上分层重新排列结构特征,Vo 辅助锂离子迁移的效果得到了优化。我们的研究结果为了解 Vo 所促进的优异离子传导性的微观起源提供了新的视角,有助于高性能 SE 的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen Vacancy-Induced Directional Ordering of Li-Ion Pathways for Enhanced Ion-Conducting Solid Electrolytes

Oxygen Vacancy-Induced Directional Ordering of Li-Ion Pathways for Enhanced Ion-Conducting Solid Electrolytes

Defects in perovskite oxide solid electrolytes (SEs) impact Li-ion conductivity. However, the role of oxygen vacancies (Vo) in transport behavior has been less explored. Herein, our study elucidates the microscopic origin of the role of Vo in enhancing the total ionic conductivity of a prototype lithium lanthanum titanate while maintaining its insulating properties. Scanning transmission electron microscopy and theoretical calculations reveal that the presence of Vo significantly lowers the activation energy of Li-ion migration. The Vo is revealed to be preferentially aligned parallel to c-planes and causes modulated lattice expansion in an alternating manner, resulting in easy directional Li-ion transport. The effect of Vo-assisted Li-ion transport is optimized through the hierarchical rearrangement of structural features at multiple length scales close to the direction of the Vo arrays. Our results offer novel insights into the microscopic origins of superior ion conductivity facilitated by Vo, contributing to the design of high-performance SEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信