Huanhuan Gao, Baobing Fan*, Liyang Yu, Yiwen Wang, Ruipeng Li, Wenlin Jiang, Tianqi Chen, Jie Zeng, Francis R. Lin, Bin Kan, Hongxiang Li, Lei Wang and Alex K.-Y. Jen*,
{"title":"有机太阳能电池中二聚体-连接体诱导的构象锁定与非辐射能量损失的相关性","authors":"Huanhuan Gao, Baobing Fan*, Liyang Yu, Yiwen Wang, Ruipeng Li, Wenlin Jiang, Tianqi Chen, Jie Zeng, Francis R. Lin, Bin Kan, Hongxiang Li, Lei Wang and Alex K.-Y. Jen*, ","doi":"10.1021/acsenergylett.4c0242910.1021/acsenergylett.4c02429","DOIUrl":null,"url":null,"abstract":"<p >The efficiencies of dimer-based devices still lag those of their small molecule-based counterparts. This is primarily due to the considerable dihedrals in the dimer skeleton, which compromises the molecular packing, thus influencing the charge generation and nonradiative voltage loss (Δ<i>V</i><sub>oc</sub>,<sub>nr</sub>). Herein, we developed two dimeric acceptors with varied π-linkers to investigate the influence of linker-induced conformational lock on Δ<i>V</i><sub>oc</sub>,<sub>nr</sub>. We find that the helically lapped <i>O</i>-shaped dimer delivers better intermolecular packing than the planar <i>S</i>-shaped one that incorporates a bulkier π-linker. However, its planar skeleton is instead more favorable for forming a compact and ordered stacking with the host acceptor in ternary blend. This possibly promotes exciton dissociation, thus reducing the nonradiative decay of excited states. Moreover, its longer exciton lifetime could offer additional charge-transfer channels. These contributions effectively minimize Δ<i>V</i><sub>oc</sub>,<sub>nr</sub> to 0.195 eV, while delivering a high efficiency approaching 20% in the derived ternary device.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5541–5549 5541–5549"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation of Dimer-Linker-Induced Conformational Lock with Nonradiative Energy Loss in Organic Solar Cells\",\"authors\":\"Huanhuan Gao, Baobing Fan*, Liyang Yu, Yiwen Wang, Ruipeng Li, Wenlin Jiang, Tianqi Chen, Jie Zeng, Francis R. Lin, Bin Kan, Hongxiang Li, Lei Wang and Alex K.-Y. Jen*, \",\"doi\":\"10.1021/acsenergylett.4c0242910.1021/acsenergylett.4c02429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The efficiencies of dimer-based devices still lag those of their small molecule-based counterparts. This is primarily due to the considerable dihedrals in the dimer skeleton, which compromises the molecular packing, thus influencing the charge generation and nonradiative voltage loss (Δ<i>V</i><sub>oc</sub>,<sub>nr</sub>). Herein, we developed two dimeric acceptors with varied π-linkers to investigate the influence of linker-induced conformational lock on Δ<i>V</i><sub>oc</sub>,<sub>nr</sub>. We find that the helically lapped <i>O</i>-shaped dimer delivers better intermolecular packing than the planar <i>S</i>-shaped one that incorporates a bulkier π-linker. However, its planar skeleton is instead more favorable for forming a compact and ordered stacking with the host acceptor in ternary blend. This possibly promotes exciton dissociation, thus reducing the nonradiative decay of excited states. Moreover, its longer exciton lifetime could offer additional charge-transfer channels. These contributions effectively minimize Δ<i>V</i><sub>oc</sub>,<sub>nr</sub> to 0.195 eV, while delivering a high efficiency approaching 20% in the derived ternary device.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 11\",\"pages\":\"5541–5549 5541–5549\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02429\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02429","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
基于二聚体的器件的效率仍然落后于基于小分子的器件。这主要是由于二聚体骨架中存在大量的二面体,从而影响了分子的堆积,进而影响电荷的产生和非辐射电压损失(ΔVoc,nr)。在此,我们开发了两种具有不同 π 连接体的二聚受体,以研究连接体诱导的构象锁定对 ΔVoc,nr 的影响。我们发现,螺旋搭接的 O 形二聚受体比包含较粗大 π 连接体的平面 S 形二聚受体能提供更好的分子间堆积。然而,其平面骨架反而更有利于与三元共混物中的主受体形成紧凑有序的堆叠。这可能会促进激子解离,从而减少激发态的非辐射衰变。此外,较长的激子寿命还能提供额外的电荷转移通道。这些贡献有效地将ΔVoc,nr 降低到 0.195 eV,同时在衍生的三元器件中实现了接近 20% 的高效率。
Correlation of Dimer-Linker-Induced Conformational Lock with Nonradiative Energy Loss in Organic Solar Cells
The efficiencies of dimer-based devices still lag those of their small molecule-based counterparts. This is primarily due to the considerable dihedrals in the dimer skeleton, which compromises the molecular packing, thus influencing the charge generation and nonradiative voltage loss (ΔVoc,nr). Herein, we developed two dimeric acceptors with varied π-linkers to investigate the influence of linker-induced conformational lock on ΔVoc,nr. We find that the helically lapped O-shaped dimer delivers better intermolecular packing than the planar S-shaped one that incorporates a bulkier π-linker. However, its planar skeleton is instead more favorable for forming a compact and ordered stacking with the host acceptor in ternary blend. This possibly promotes exciton dissociation, thus reducing the nonradiative decay of excited states. Moreover, its longer exciton lifetime could offer additional charge-transfer channels. These contributions effectively minimize ΔVoc,nr to 0.195 eV, while delivering a high efficiency approaching 20% in the derived ternary device.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.