银原子诱导镉位点周围的微应变环境,为几乎 100% 的 CO2 到 CO 电还原构建二原子位点

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiahui Hua, Zhongqin Dai, Kehao Cheng, Zhongliao Wang, Chunfeng Shao*, Yong Jiang*, Kai Dai* and Lei Wang*, 
{"title":"银原子诱导镉位点周围的微应变环境,为几乎 100% 的 CO2 到 CO 电还原构建二原子位点","authors":"Jiahui Hua,&nbsp;Zhongqin Dai,&nbsp;Kehao Cheng,&nbsp;Zhongliao Wang,&nbsp;Chunfeng Shao*,&nbsp;Yong Jiang*,&nbsp;Kai Dai* and Lei Wang*,&nbsp;","doi":"10.1021/acs.nanolett.4c0397810.1021/acs.nanolett.4c03978","DOIUrl":null,"url":null,"abstract":"<p >Deeply understanding how local microstrain environment around diatomic sites influences their electronic state and adsorption is crucial for improving electrochemical CO<sub>2</sub> reduction (eCO<sub>2</sub>R) reaction; however, precise engineering of the atomic microstrain environment is challenging. Herein, we fabricate Ag-CdTMT electrocatalysts with AgN<sub>2</sub>S<sub>2</sub>–CdN<sub>2</sub>S<sub>2</sub> diatomic sites by anchoring Ag to the nodes of CdTMT (TMT = 2,4,6-trimercaptotriazine anion) coordination polymers. The Ag-CdTMT catalysts achieve approximately 100% Faradaic efficiency for CO reduction with an industrial level current density (∼200 mA cm<sup>–2</sup> in H-cell). The embedded Ag atoms induce the formation of Ag–Cd diatomic sites with local microstrain, stretching Cd–N/S bonds, and reinforcing electron localization at Cd sites. The microstrain engineering and adjacent Ag atoms synergistically reduced Cd 4d–C 2p antibonding orbital occupancy for intensifying *COOH adsorption as the rate-determining step. This study provides novel insights into customizing the electronic structure of diatomic sites through strain engineering.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 45","pages":"14363–14372 14363–14372"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ag Atom Induces Microstrain Environment around Cd Sites to Construct Diatomic Sites for Almost 100% CO2-to-CO Electroreduction\",\"authors\":\"Jiahui Hua,&nbsp;Zhongqin Dai,&nbsp;Kehao Cheng,&nbsp;Zhongliao Wang,&nbsp;Chunfeng Shao*,&nbsp;Yong Jiang*,&nbsp;Kai Dai* and Lei Wang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0397810.1021/acs.nanolett.4c03978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Deeply understanding how local microstrain environment around diatomic sites influences their electronic state and adsorption is crucial for improving electrochemical CO<sub>2</sub> reduction (eCO<sub>2</sub>R) reaction; however, precise engineering of the atomic microstrain environment is challenging. Herein, we fabricate Ag-CdTMT electrocatalysts with AgN<sub>2</sub>S<sub>2</sub>–CdN<sub>2</sub>S<sub>2</sub> diatomic sites by anchoring Ag to the nodes of CdTMT (TMT = 2,4,6-trimercaptotriazine anion) coordination polymers. The Ag-CdTMT catalysts achieve approximately 100% Faradaic efficiency for CO reduction with an industrial level current density (∼200 mA cm<sup>–2</sup> in H-cell). The embedded Ag atoms induce the formation of Ag–Cd diatomic sites with local microstrain, stretching Cd–N/S bonds, and reinforcing electron localization at Cd sites. The microstrain engineering and adjacent Ag atoms synergistically reduced Cd 4d–C 2p antibonding orbital occupancy for intensifying *COOH adsorption as the rate-determining step. This study provides novel insights into customizing the electronic structure of diatomic sites through strain engineering.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 45\",\"pages\":\"14363–14372 14363–14372\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c03978\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c03978","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

深入了解二原子位点周围的局部微应变环境如何影响它们的电子状态和吸附作用,对于改善电化学二氧化碳还原(eCO2R)反应至关重要;然而,原子微应变环境的精确工程设计具有挑战性。在此,我们通过将 Ag 固定在 CdTMT(TMT = 2,4,6-三巯基三嗪阴离子)配位聚合物的节点上,制备出具有 AgN2S2-CdN2S2 二原子位点的 Ag-CdTMT 电催化剂。Ag-CdTMT 催化剂以工业水平的电流密度(在 H 细胞中为 ∼200 mA cm-2)实现了约 100% 的 CO 还原法拉第效率。嵌入的银原子诱导形成了具有局部微应变的银-镉二原子位点,拉伸了 Cd-N/S 键,并加强了 Cd 位点的电子定位。微应变工程和相邻的银原子协同降低了镉的 4d-C 2p 反键轨道占用率,从而加强了作为速率决定步骤的 *COOH 吸附。这项研究为通过应变工程定制二原子位点的电子结构提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ag Atom Induces Microstrain Environment around Cd Sites to Construct Diatomic Sites for Almost 100% CO2-to-CO Electroreduction

Ag Atom Induces Microstrain Environment around Cd Sites to Construct Diatomic Sites for Almost 100% CO2-to-CO Electroreduction

Deeply understanding how local microstrain environment around diatomic sites influences their electronic state and adsorption is crucial for improving electrochemical CO2 reduction (eCO2R) reaction; however, precise engineering of the atomic microstrain environment is challenging. Herein, we fabricate Ag-CdTMT electrocatalysts with AgN2S2–CdN2S2 diatomic sites by anchoring Ag to the nodes of CdTMT (TMT = 2,4,6-trimercaptotriazine anion) coordination polymers. The Ag-CdTMT catalysts achieve approximately 100% Faradaic efficiency for CO reduction with an industrial level current density (∼200 mA cm–2 in H-cell). The embedded Ag atoms induce the formation of Ag–Cd diatomic sites with local microstrain, stretching Cd–N/S bonds, and reinforcing electron localization at Cd sites. The microstrain engineering and adjacent Ag atoms synergistically reduced Cd 4d–C 2p antibonding orbital occupancy for intensifying *COOH adsorption as the rate-determining step. This study provides novel insights into customizing the electronic structure of diatomic sites through strain engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信