{"title":"基于磷光的凝胶化动态配位驱动组装可视化","authors":"Ying Wang, Jiazhuo Li, Ronghui Zhou and Peng Wu*, ","doi":"10.1021/acs.chemmater.4c0246010.1021/acs.chemmater.4c02460","DOIUrl":null,"url":null,"abstract":"<p >Coordination-driven supramolecular hydrogels feature excellent processability and dynamic responsibility and thus are appealing for applications such as biomedical photonics. Since they are constructed via hierarchical assembly, the gelation processes are difficult to control in a highly efficient manner, leading to limited transparency. For the formation of hydrogel, stepwise introduction of water is essential for the gelation. Phosphorescence with high H<sub>2</sub>O sensitivity can be explored for in situ monitoring and precise understanding of the gelation process. Herein, a hydrogel from Gd<sup>3+</sup>-adenosine monophosphate (AMP) assembly was chosen as the model, which was formed via the strong Gd<sup>3+</sup>-PO3 coordination and π–π stacking of A bases. On the basis of the excellent guest inclusion and phosphorescence inducing of the Gd<sup>3+</sup>-AMP matrix, thioflavin-T (ThT, cyan fluorescence) and Pt(II) meso-tetra(4-carboxyphenyl) porphine (PtTCPP, red phosphorescence) were coencapsulated as the probe. Via the luminescence changes, the gelation process was visualized, and two kinds of cloudy side products (NPs and sol, indistinguishable to the naked eye) were identified. Further calorimetric investigation on the above cloudy side products allowed for improvement of the transparency of the hydrogel by changing the synthesis temperature. The obtained flexible and transparent room-temperature phosphorescence (RTP) hydrogel was explored for implantable optical waveguide-based oxygen sensing.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorescence-Based Visualization of the Dynamic Coordination-Driven Assembly in Gelation\",\"authors\":\"Ying Wang, Jiazhuo Li, Ronghui Zhou and Peng Wu*, \",\"doi\":\"10.1021/acs.chemmater.4c0246010.1021/acs.chemmater.4c02460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Coordination-driven supramolecular hydrogels feature excellent processability and dynamic responsibility and thus are appealing for applications such as biomedical photonics. Since they are constructed via hierarchical assembly, the gelation processes are difficult to control in a highly efficient manner, leading to limited transparency. For the formation of hydrogel, stepwise introduction of water is essential for the gelation. Phosphorescence with high H<sub>2</sub>O sensitivity can be explored for in situ monitoring and precise understanding of the gelation process. Herein, a hydrogel from Gd<sup>3+</sup>-adenosine monophosphate (AMP) assembly was chosen as the model, which was formed via the strong Gd<sup>3+</sup>-PO3 coordination and π–π stacking of A bases. On the basis of the excellent guest inclusion and phosphorescence inducing of the Gd<sup>3+</sup>-AMP matrix, thioflavin-T (ThT, cyan fluorescence) and Pt(II) meso-tetra(4-carboxyphenyl) porphine (PtTCPP, red phosphorescence) were coencapsulated as the probe. Via the luminescence changes, the gelation process was visualized, and two kinds of cloudy side products (NPs and sol, indistinguishable to the naked eye) were identified. Further calorimetric investigation on the above cloudy side products allowed for improvement of the transparency of the hydrogel by changing the synthesis temperature. The obtained flexible and transparent room-temperature phosphorescence (RTP) hydrogel was explored for implantable optical waveguide-based oxygen sensing.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02460\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02460","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Phosphorescence-Based Visualization of the Dynamic Coordination-Driven Assembly in Gelation
Coordination-driven supramolecular hydrogels feature excellent processability and dynamic responsibility and thus are appealing for applications such as biomedical photonics. Since they are constructed via hierarchical assembly, the gelation processes are difficult to control in a highly efficient manner, leading to limited transparency. For the formation of hydrogel, stepwise introduction of water is essential for the gelation. Phosphorescence with high H2O sensitivity can be explored for in situ monitoring and precise understanding of the gelation process. Herein, a hydrogel from Gd3+-adenosine monophosphate (AMP) assembly was chosen as the model, which was formed via the strong Gd3+-PO3 coordination and π–π stacking of A bases. On the basis of the excellent guest inclusion and phosphorescence inducing of the Gd3+-AMP matrix, thioflavin-T (ThT, cyan fluorescence) and Pt(II) meso-tetra(4-carboxyphenyl) porphine (PtTCPP, red phosphorescence) were coencapsulated as the probe. Via the luminescence changes, the gelation process was visualized, and two kinds of cloudy side products (NPs and sol, indistinguishable to the naked eye) were identified. Further calorimetric investigation on the above cloudy side products allowed for improvement of the transparency of the hydrogel by changing the synthesis temperature. The obtained flexible and transparent room-temperature phosphorescence (RTP) hydrogel was explored for implantable optical waveguide-based oxygen sensing.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.