Nikitas Georgiou, Eleni Chontzopoulou, Efthymios Alexandros Routsi, Irene Georgia Stavrakaki, Errikos Petsas, Nikoletta Zoupanou, Margarita Georgia Kakava, Demeter Tzeli, Thomas Mavromoustakos and Sofia Kiriakidi*,
{"title":"探索高血压:AT1 受体、沙坦类药物和脂质双层膜的作用","authors":"Nikitas Georgiou, Eleni Chontzopoulou, Efthymios Alexandros Routsi, Irene Georgia Stavrakaki, Errikos Petsas, Nikoletta Zoupanou, Margarita Georgia Kakava, Demeter Tzeli, Thomas Mavromoustakos and Sofia Kiriakidi*, ","doi":"10.1021/acsomega.4c0635110.1021/acsomega.4c06351","DOIUrl":null,"url":null,"abstract":"<p >The rational design of AT1 receptor antagonists represents a pivotal approach in the development of therapeutic agents targeting cardiovascular pathophysiology. Sartans, a class of compounds engineered to inhibit the binding and activation of Angiotensin II on the AT1 receptor, have demonstrated significant clinical efficacy. This review explores the multifaceted role of sartans in mitigating hypertension and related complications. We highlight the integration of crystallography, computational simulations, and NMR spectroscopy to elucidate sartan-AT1 receptor interactions, providing a foundation for the next-generation antagonist design. The review also delves into the challenges posed by the high lipophilicity and suboptimal bioavailability of sartans, emphasizing advancements in nanotechnology and novel drug delivery systems. Additionally, we discuss the impact of lipid bilayers on the AT1 receptor conformation and drug binding, underscoring the importance of the lipidic environment in receptor-drug interactions. We suggest that optimizing drug design to account for these factors could enhance the therapeutic potential of AT1 receptor antagonists, paving the way for improved cardiovascular health outcomes.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 45","pages":"44876–44890 44876–44890"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06351","citationCount":"0","resultStr":"{\"title\":\"Exploring Hypertension: The Role of AT1 Receptors, Sartans, and Lipid Bilayers\",\"authors\":\"Nikitas Georgiou, Eleni Chontzopoulou, Efthymios Alexandros Routsi, Irene Georgia Stavrakaki, Errikos Petsas, Nikoletta Zoupanou, Margarita Georgia Kakava, Demeter Tzeli, Thomas Mavromoustakos and Sofia Kiriakidi*, \",\"doi\":\"10.1021/acsomega.4c0635110.1021/acsomega.4c06351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rational design of AT1 receptor antagonists represents a pivotal approach in the development of therapeutic agents targeting cardiovascular pathophysiology. Sartans, a class of compounds engineered to inhibit the binding and activation of Angiotensin II on the AT1 receptor, have demonstrated significant clinical efficacy. This review explores the multifaceted role of sartans in mitigating hypertension and related complications. We highlight the integration of crystallography, computational simulations, and NMR spectroscopy to elucidate sartan-AT1 receptor interactions, providing a foundation for the next-generation antagonist design. The review also delves into the challenges posed by the high lipophilicity and suboptimal bioavailability of sartans, emphasizing advancements in nanotechnology and novel drug delivery systems. Additionally, we discuss the impact of lipid bilayers on the AT1 receptor conformation and drug binding, underscoring the importance of the lipidic environment in receptor-drug interactions. We suggest that optimizing drug design to account for these factors could enhance the therapeutic potential of AT1 receptor antagonists, paving the way for improved cardiovascular health outcomes.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 45\",\"pages\":\"44876–44890 44876–44890\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06351\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c06351\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c06351","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring Hypertension: The Role of AT1 Receptors, Sartans, and Lipid Bilayers
The rational design of AT1 receptor antagonists represents a pivotal approach in the development of therapeutic agents targeting cardiovascular pathophysiology. Sartans, a class of compounds engineered to inhibit the binding and activation of Angiotensin II on the AT1 receptor, have demonstrated significant clinical efficacy. This review explores the multifaceted role of sartans in mitigating hypertension and related complications. We highlight the integration of crystallography, computational simulations, and NMR spectroscopy to elucidate sartan-AT1 receptor interactions, providing a foundation for the next-generation antagonist design. The review also delves into the challenges posed by the high lipophilicity and suboptimal bioavailability of sartans, emphasizing advancements in nanotechnology and novel drug delivery systems. Additionally, we discuss the impact of lipid bilayers on the AT1 receptor conformation and drug binding, underscoring the importance of the lipidic environment in receptor-drug interactions. We suggest that optimizing drug design to account for these factors could enhance the therapeutic potential of AT1 receptor antagonists, paving the way for improved cardiovascular health outcomes.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.