蒸汽渗透法合成硫化铟魔簇

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kihoon Kim, Shana Havenridge, Nestor J. Zaluzec, Donghyeon Kang, Nuwanthaka P. Jayaweera, Jeffrey W. Elam, Karen L. Mulfort, Cong Liu and Alex B. F. Martinson*, 
{"title":"蒸汽渗透法合成硫化铟魔簇","authors":"Kihoon Kim,&nbsp;Shana Havenridge,&nbsp;Nestor J. Zaluzec,&nbsp;Donghyeon Kang,&nbsp;Nuwanthaka P. Jayaweera,&nbsp;Jeffrey W. Elam,&nbsp;Karen L. Mulfort,&nbsp;Cong Liu and Alex B. F. Martinson*,&nbsp;","doi":"10.1021/acsnano.4c1094310.1021/acsnano.4c10943","DOIUrl":null,"url":null,"abstract":"<p >The energetically favorable formation of atomically precise clusters, known as magic size clusters, in the solution phase enables a precision nanoscale synthesis with exquisite uniformity. We report the synthesis of magic size clusters via vapor infiltration of atomic layer deposition precursors directly in a polymer thin film. Sequential infiltration of trimethylindium vapor and hydrogen sulfide gas into poly(methyl methacrylate) leads to the formation of clusters with uniform properties consistent with a magic size cluster─In<sub>6</sub>S<sub>6</sub>(CH<sub>3</sub>)<sub>6</sub>. While an increase in cluster size might be expected with additional sequential infiltration cycles of the reactive In and S precursors, uniform properties consistent with magic size clusters form in multiple polymers under a range of processing conditions. Ultraviolet–visible absorption spectra of In<sub>6</sub>S<sub>6</sub>(CH<sub>3</sub>)<sub>6</sub> are largely independent of the number of sequential infiltration cycles and exhibit air stability, both of which are attributed to an energetically favorable synthetic pathway that is evaluated with density functional theory.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31372–31380 31372–31380"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor Infiltration Synthesis of Indium Sulfide Magic Size Cluster\",\"authors\":\"Kihoon Kim,&nbsp;Shana Havenridge,&nbsp;Nestor J. Zaluzec,&nbsp;Donghyeon Kang,&nbsp;Nuwanthaka P. Jayaweera,&nbsp;Jeffrey W. Elam,&nbsp;Karen L. Mulfort,&nbsp;Cong Liu and Alex B. F. Martinson*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1094310.1021/acsnano.4c10943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The energetically favorable formation of atomically precise clusters, known as magic size clusters, in the solution phase enables a precision nanoscale synthesis with exquisite uniformity. We report the synthesis of magic size clusters via vapor infiltration of atomic layer deposition precursors directly in a polymer thin film. Sequential infiltration of trimethylindium vapor and hydrogen sulfide gas into poly(methyl methacrylate) leads to the formation of clusters with uniform properties consistent with a magic size cluster─In<sub>6</sub>S<sub>6</sub>(CH<sub>3</sub>)<sub>6</sub>. While an increase in cluster size might be expected with additional sequential infiltration cycles of the reactive In and S precursors, uniform properties consistent with magic size clusters form in multiple polymers under a range of processing conditions. Ultraviolet–visible absorption spectra of In<sub>6</sub>S<sub>6</sub>(CH<sub>3</sub>)<sub>6</sub> are largely independent of the number of sequential infiltration cycles and exhibit air stability, both of which are attributed to an energetically favorable synthetic pathway that is evaluated with density functional theory.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 45\",\"pages\":\"31372–31380 31372–31380\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c10943\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c10943","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在溶液相中形成原子级精确团簇(称为神奇尺寸团簇)在能量上是有利的,这使得精确的纳米级合成具有极高的均匀性。我们报告了直接在聚合物薄膜中通过原子层沉积前驱体的气相渗透合成神奇尺寸团簇的过程。将三甲基铟蒸气和硫化氢气体依次渗入聚甲基丙烯酸甲酯,可形成性质均匀一致的魔幻尺寸簇-In6S6(CH3)6。虽然随着反应性 In 和 S 前驱体的连续渗入,团簇尺寸可能会增大,但在一系列加工条件下,多种聚合物中都会形成与神奇尺寸团簇一致的均匀特性。In6S6(CH3)6 的紫外可见吸收光谱基本上不受连续浸润循环次数的影响,并表现出空气稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vapor Infiltration Synthesis of Indium Sulfide Magic Size Cluster

Vapor Infiltration Synthesis of Indium Sulfide Magic Size Cluster

The energetically favorable formation of atomically precise clusters, known as magic size clusters, in the solution phase enables a precision nanoscale synthesis with exquisite uniformity. We report the synthesis of magic size clusters via vapor infiltration of atomic layer deposition precursors directly in a polymer thin film. Sequential infiltration of trimethylindium vapor and hydrogen sulfide gas into poly(methyl methacrylate) leads to the formation of clusters with uniform properties consistent with a magic size cluster─In6S6(CH3)6. While an increase in cluster size might be expected with additional sequential infiltration cycles of the reactive In and S precursors, uniform properties consistent with magic size clusters form in multiple polymers under a range of processing conditions. Ultraviolet–visible absorption spectra of In6S6(CH3)6 are largely independent of the number of sequential infiltration cycles and exhibit air stability, both of which are attributed to an energetically favorable synthetic pathway that is evaluated with density functional theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信