Huiquan Wu, Feng Xu, Hang Jin, Mingcheng Xue, Wangzihan Zhang, Jianhui Yang, Junyi Huang, Yuqing Jiang, Bin Qiu, Bin Lin, Qiang Gao, Songyue Chen* and Daoheng Sun*,
{"title":"用于定向心脏组织制造的三维纳米纤维辅助嵌入式挤压生物打印技术","authors":"Huiquan Wu, Feng Xu, Hang Jin, Mingcheng Xue, Wangzihan Zhang, Jianhui Yang, Junyi Huang, Yuqing Jiang, Bin Qiu, Bin Lin, Qiang Gao, Songyue Chen* and Daoheng Sun*, ","doi":"10.1021/acsbiomaterials.4c0161110.1021/acsbiomaterials.4c01611","DOIUrl":null,"url":null,"abstract":"<p >Three-dimensional (3D) bioprinting technology stands out as a promising tissue manufacturing process to control the geometry precisely with cell-loaded bioinks. However, the isotropic culture environment within the bioink and the lack of topographical cues impede the formation of oriented cardiac tissue. To overcome this limitation, we present a novel method named 3D nanofiber-assisted embedded bioprinting (3D-NFEP) to fabricate cardiac tissue with an oriented morphology. Aligned 3D nanofiber scaffolds were fabricated by divergence electrospinning, which provided structural support for printing of the low-viscosity bioink and structural induction to cardiomyocytes. Cells adhered to the aligned fibers after hydrogel degradation, and a high degree of cell alignment was observed. This technology was also demonstrated as a feasible solution for multilayer cell printing. Therefore, 3D-NFEP was demonstrated as a promising method for bioprinting oriented cardiac tissue with low-viscosity bioink and is expected to be applied for structured and cardiac tissue engineering.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Nanofiber-Assisted Embedded Extrusion Bioprinting for Oriented Cardiac Tissue Fabrication\",\"authors\":\"Huiquan Wu, Feng Xu, Hang Jin, Mingcheng Xue, Wangzihan Zhang, Jianhui Yang, Junyi Huang, Yuqing Jiang, Bin Qiu, Bin Lin, Qiang Gao, Songyue Chen* and Daoheng Sun*, \",\"doi\":\"10.1021/acsbiomaterials.4c0161110.1021/acsbiomaterials.4c01611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Three-dimensional (3D) bioprinting technology stands out as a promising tissue manufacturing process to control the geometry precisely with cell-loaded bioinks. However, the isotropic culture environment within the bioink and the lack of topographical cues impede the formation of oriented cardiac tissue. To overcome this limitation, we present a novel method named 3D nanofiber-assisted embedded bioprinting (3D-NFEP) to fabricate cardiac tissue with an oriented morphology. Aligned 3D nanofiber scaffolds were fabricated by divergence electrospinning, which provided structural support for printing of the low-viscosity bioink and structural induction to cardiomyocytes. Cells adhered to the aligned fibers after hydrogel degradation, and a high degree of cell alignment was observed. This technology was also demonstrated as a feasible solution for multilayer cell printing. Therefore, 3D-NFEP was demonstrated as a promising method for bioprinting oriented cardiac tissue with low-viscosity bioink and is expected to be applied for structured and cardiac tissue engineering.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01611\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01611","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
3D Nanofiber-Assisted Embedded Extrusion Bioprinting for Oriented Cardiac Tissue Fabrication
Three-dimensional (3D) bioprinting technology stands out as a promising tissue manufacturing process to control the geometry precisely with cell-loaded bioinks. However, the isotropic culture environment within the bioink and the lack of topographical cues impede the formation of oriented cardiac tissue. To overcome this limitation, we present a novel method named 3D nanofiber-assisted embedded bioprinting (3D-NFEP) to fabricate cardiac tissue with an oriented morphology. Aligned 3D nanofiber scaffolds were fabricated by divergence electrospinning, which provided structural support for printing of the low-viscosity bioink and structural induction to cardiomyocytes. Cells adhered to the aligned fibers after hydrogel degradation, and a high degree of cell alignment was observed. This technology was also demonstrated as a feasible solution for multilayer cell printing. Therefore, 3D-NFEP was demonstrated as a promising method for bioprinting oriented cardiac tissue with low-viscosity bioink and is expected to be applied for structured and cardiac tissue engineering.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture