Yuxi Wu, Yuhong Tian*, Xinping He, Jiaxin Guo, Kaiya Yi and Chunhai Yi*,
{"title":"制备通过渗透汽化高效回收乙醇的共价有机框架/PDMS 混合基质膜","authors":"Yuxi Wu, Yuhong Tian*, Xinping He, Jiaxin Guo, Kaiya Yi and Chunhai Yi*, ","doi":"10.1021/acs.iecr.4c0288610.1021/acs.iecr.4c02886","DOIUrl":null,"url":null,"abstract":"<p >Bioethanol, as a renewable energy source, is receiving continuous attention for efficient recovery in aqueous solution. In this work, high-permeable ethanol mix matrix membranes (MMMs) were prepared by incorporating covalent organic framework-300 (COF-300) into polydimethylsiloxane (PDMS) by solution blending. The morphology, functional groups, surface roughness, contact angle, and swelling degree of MMMs before and after COF-300 loading were characterized and analyzed. The encouraging finding is that the incorporation of porous COF-300 particles results in a significant enhancement of the hydrophobicity and ethanol affinity, which in turn increases the total flux and separation factor. The pervaporation results showed that the total flux reached 1515.28 g·m<sup>–2</sup>·h<sup>–1</sup> and the separation factor reached 8.7 at a 3 wt % COF loading. Compared with pure PDMS, the total flux and separation factor of MMMs increased by 71.4 and 7.8%, respectively. Primarily based on the unique pore structure characteristics of COF-300, it can provide ultrafast channels for ethanol molecules. At the same time, COF-300 itself is a porous hydrophobicity particle with good ethanol affinity, which will promote the diffusion of ethanol molecules, further promote membrane swelling, and thus increase the separation factor and flux. Moreover, the MMMs in this work exhibited satisfactory stability during 6 months of continuous operation. Therefore, COF-300 is expected to be an ideal filler material to improve the separation performance of permeable ethanol membranes.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 45","pages":"19756–19766 19756–19766"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Covalent Organic Framework/PDMS Mixed Matrix Membranes for Efficient Ethanol Recovery via Pervaporation\",\"authors\":\"Yuxi Wu, Yuhong Tian*, Xinping He, Jiaxin Guo, Kaiya Yi and Chunhai Yi*, \",\"doi\":\"10.1021/acs.iecr.4c0288610.1021/acs.iecr.4c02886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bioethanol, as a renewable energy source, is receiving continuous attention for efficient recovery in aqueous solution. In this work, high-permeable ethanol mix matrix membranes (MMMs) were prepared by incorporating covalent organic framework-300 (COF-300) into polydimethylsiloxane (PDMS) by solution blending. The morphology, functional groups, surface roughness, contact angle, and swelling degree of MMMs before and after COF-300 loading were characterized and analyzed. The encouraging finding is that the incorporation of porous COF-300 particles results in a significant enhancement of the hydrophobicity and ethanol affinity, which in turn increases the total flux and separation factor. The pervaporation results showed that the total flux reached 1515.28 g·m<sup>–2</sup>·h<sup>–1</sup> and the separation factor reached 8.7 at a 3 wt % COF loading. Compared with pure PDMS, the total flux and separation factor of MMMs increased by 71.4 and 7.8%, respectively. Primarily based on the unique pore structure characteristics of COF-300, it can provide ultrafast channels for ethanol molecules. At the same time, COF-300 itself is a porous hydrophobicity particle with good ethanol affinity, which will promote the diffusion of ethanol molecules, further promote membrane swelling, and thus increase the separation factor and flux. Moreover, the MMMs in this work exhibited satisfactory stability during 6 months of continuous operation. Therefore, COF-300 is expected to be an ideal filler material to improve the separation performance of permeable ethanol membranes.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"63 45\",\"pages\":\"19756–19766 19756–19766\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.4c02886\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c02886","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Preparation of Covalent Organic Framework/PDMS Mixed Matrix Membranes for Efficient Ethanol Recovery via Pervaporation
Bioethanol, as a renewable energy source, is receiving continuous attention for efficient recovery in aqueous solution. In this work, high-permeable ethanol mix matrix membranes (MMMs) were prepared by incorporating covalent organic framework-300 (COF-300) into polydimethylsiloxane (PDMS) by solution blending. The morphology, functional groups, surface roughness, contact angle, and swelling degree of MMMs before and after COF-300 loading were characterized and analyzed. The encouraging finding is that the incorporation of porous COF-300 particles results in a significant enhancement of the hydrophobicity and ethanol affinity, which in turn increases the total flux and separation factor. The pervaporation results showed that the total flux reached 1515.28 g·m–2·h–1 and the separation factor reached 8.7 at a 3 wt % COF loading. Compared with pure PDMS, the total flux and separation factor of MMMs increased by 71.4 and 7.8%, respectively. Primarily based on the unique pore structure characteristics of COF-300, it can provide ultrafast channels for ethanol molecules. At the same time, COF-300 itself is a porous hydrophobicity particle with good ethanol affinity, which will promote the diffusion of ethanol molecules, further promote membrane swelling, and thus increase the separation factor and flux. Moreover, the MMMs in this work exhibited satisfactory stability during 6 months of continuous operation. Therefore, COF-300 is expected to be an ideal filler material to improve the separation performance of permeable ethanol membranes.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.