{"title":"一氧化氮电催化还原为羟胺的单原子铁催化剂研究:DFT 研究","authors":"Wenqi Ruan, Chen Yang, Jianhong Hu, Wei Lin, Xiangyu Guo* and Kaining Ding*, ","doi":"10.1021/acs.langmuir.4c0336310.1021/acs.langmuir.4c03363","DOIUrl":null,"url":null,"abstract":"<p >Hydroxylamine, as an important reducing agent, disinfectant, foaming agent, and biocide, plays a role in both human life and industrial production. However, its synthesis is confronted with challenges, such as high pollution and large consumption. Here, we propose a coordination tailoring strategy to design 47 graphene-supported single iron atom catalysts (SACs), namely, Fe@C<sub><i>x</i></sub>Z<sub><i>y</i></sub> (Z = B, N, O, P, and S), for the reduction of nitric oxide to hydroxylamine. Using density functional theory calculations, we demonstrated the great impact of the coordination environment on the stability, catalytic selectivity, and activity of the Fe site. We identified that the experimentally available Fe@N<sub>4</sub> possesses an ultralow theoretical limiting potential of −0.32 V compared to that of other catalysts. A comprehensive investigation of the electronic properties elucidates the underlying active origin and reaction mechanism of the nitric oxide reduction reaction to hydroxylamine on Fe@N<sub>4</sub>. These results not only explain the catalytic origin of synthesized SACs for the NH<sub>2</sub>OH production but also offer theoretical guidance for further optimizing high-performance catalysts.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 45","pages":"24062–24073 24062–24073"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of a Single Atom Iron Catalyst for the Electrocatalytic Reduction of Nitric Oxide to Hydroxylamine: A DFT Study\",\"authors\":\"Wenqi Ruan, Chen Yang, Jianhong Hu, Wei Lin, Xiangyu Guo* and Kaining Ding*, \",\"doi\":\"10.1021/acs.langmuir.4c0336310.1021/acs.langmuir.4c03363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydroxylamine, as an important reducing agent, disinfectant, foaming agent, and biocide, plays a role in both human life and industrial production. However, its synthesis is confronted with challenges, such as high pollution and large consumption. Here, we propose a coordination tailoring strategy to design 47 graphene-supported single iron atom catalysts (SACs), namely, Fe@C<sub><i>x</i></sub>Z<sub><i>y</i></sub> (Z = B, N, O, P, and S), for the reduction of nitric oxide to hydroxylamine. Using density functional theory calculations, we demonstrated the great impact of the coordination environment on the stability, catalytic selectivity, and activity of the Fe site. We identified that the experimentally available Fe@N<sub>4</sub> possesses an ultralow theoretical limiting potential of −0.32 V compared to that of other catalysts. A comprehensive investigation of the electronic properties elucidates the underlying active origin and reaction mechanism of the nitric oxide reduction reaction to hydroxylamine on Fe@N<sub>4</sub>. These results not only explain the catalytic origin of synthesized SACs for the NH<sub>2</sub>OH production but also offer theoretical guidance for further optimizing high-performance catalysts.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"40 45\",\"pages\":\"24062–24073 24062–24073\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03363\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03363","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
羟胺作为一种重要的还原剂、消毒剂、发泡剂和杀菌剂,在人类生活和工业生产中发挥着重要作用。然而,它的合成却面临着高污染、高消耗等难题。在此,我们提出了一种配位定制策略,设计出 47 种石墨烯支撑的单铁原子催化剂(SAC),即 Fe@CxZy(Z = B、N、O、P 和 S),用于将一氧化氮还原为羟胺。通过密度泛函理论计算,我们证明了配位环境对 Fe 位点的稳定性、催化选择性和活性的重大影响。我们发现,与其他催化剂相比,实验中的 Fe@N4 具有-0.32 V 的超低理论极限电位。对电子特性的全面研究阐明了 Fe@N4 上一氧化氮还原为羟胺反应的潜在活性来源和反应机理。这些结果不仅解释了合成的 SACs 对 NH2OH 生产的催化起源,还为进一步优化高性能催化剂提供了理论指导。
Investigation of a Single Atom Iron Catalyst for the Electrocatalytic Reduction of Nitric Oxide to Hydroxylamine: A DFT Study
Hydroxylamine, as an important reducing agent, disinfectant, foaming agent, and biocide, plays a role in both human life and industrial production. However, its synthesis is confronted with challenges, such as high pollution and large consumption. Here, we propose a coordination tailoring strategy to design 47 graphene-supported single iron atom catalysts (SACs), namely, Fe@CxZy (Z = B, N, O, P, and S), for the reduction of nitric oxide to hydroxylamine. Using density functional theory calculations, we demonstrated the great impact of the coordination environment on the stability, catalytic selectivity, and activity of the Fe site. We identified that the experimentally available Fe@N4 possesses an ultralow theoretical limiting potential of −0.32 V compared to that of other catalysts. A comprehensive investigation of the electronic properties elucidates the underlying active origin and reaction mechanism of the nitric oxide reduction reaction to hydroxylamine on Fe@N4. These results not only explain the catalytic origin of synthesized SACs for the NH2OH production but also offer theoretical guidance for further optimizing high-performance catalysts.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).