Mikel Dolz, Dianelis T. Monterrey, Felice Quartinello, Patricia Gomez de Santos, Ivan Mateljak, Alessandro Pellis, Georg Guebitz, Javier Viña-González* and Miguel Alcalde*,
{"title":"利用聚呋喃乙烯可溶性支架为 PEF 酶的定向进化建立酶基准","authors":"Mikel Dolz, Dianelis T. Monterrey, Felice Quartinello, Patricia Gomez de Santos, Ivan Mateljak, Alessandro Pellis, Georg Guebitz, Javier Viña-González* and Miguel Alcalde*, ","doi":"10.1021/acsomega.4c0905310.1021/acsomega.4c09053","DOIUrl":null,"url":null,"abstract":"<p >Plastic waste is a major threat in our industrialized world and is driving research into bioplastics. The success of biobased polyethylene furanoate (PEF) as a viable alternative to polyethylene terephthalate (PET) of fossil origin will depend on designing effective enzymes to break it down, aiding its recycling. Here, a panel of fungal and bacterial cutinases were functionally expressed in a tandem yeast expression system based on <i>Saccharomyces cerevisiae</i> and <i>Pichia pastoris</i>. The activity of the enzyme panel was tested with soluble PEF model scaffolds, observing a correlation with the degradation of real PEF powder. A high-throughput colorimetric screening assay based on the PEF scaffold diethyl furan-2,5-dicarboxylate was developed, establishing the basis for future directed evolution campaigns of PEFases.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 45","pages":"45633–45640 45633–45640"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09053","citationCount":"0","resultStr":"{\"title\":\"Enzyme Benchmarking with Polyethylene Furanoate Soluble Scaffolds for Directed Evolution of PEFases\",\"authors\":\"Mikel Dolz, Dianelis T. Monterrey, Felice Quartinello, Patricia Gomez de Santos, Ivan Mateljak, Alessandro Pellis, Georg Guebitz, Javier Viña-González* and Miguel Alcalde*, \",\"doi\":\"10.1021/acsomega.4c0905310.1021/acsomega.4c09053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Plastic waste is a major threat in our industrialized world and is driving research into bioplastics. The success of biobased polyethylene furanoate (PEF) as a viable alternative to polyethylene terephthalate (PET) of fossil origin will depend on designing effective enzymes to break it down, aiding its recycling. Here, a panel of fungal and bacterial cutinases were functionally expressed in a tandem yeast expression system based on <i>Saccharomyces cerevisiae</i> and <i>Pichia pastoris</i>. The activity of the enzyme panel was tested with soluble PEF model scaffolds, observing a correlation with the degradation of real PEF powder. A high-throughput colorimetric screening assay based on the PEF scaffold diethyl furan-2,5-dicarboxylate was developed, establishing the basis for future directed evolution campaigns of PEFases.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 45\",\"pages\":\"45633–45640 45633–45640\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c09053\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09053","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enzyme Benchmarking with Polyethylene Furanoate Soluble Scaffolds for Directed Evolution of PEFases
Plastic waste is a major threat in our industrialized world and is driving research into bioplastics. The success of biobased polyethylene furanoate (PEF) as a viable alternative to polyethylene terephthalate (PET) of fossil origin will depend on designing effective enzymes to break it down, aiding its recycling. Here, a panel of fungal and bacterial cutinases were functionally expressed in a tandem yeast expression system based on Saccharomyces cerevisiae and Pichia pastoris. The activity of the enzyme panel was tested with soluble PEF model scaffolds, observing a correlation with the degradation of real PEF powder. A high-throughput colorimetric screening assay based on the PEF scaffold diethyl furan-2,5-dicarboxylate was developed, establishing the basis for future directed evolution campaigns of PEFases.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.