{"title":"聚(甘油-蔗糖酸酯)/碳纳米纤维(PGS/CNF)的弹性和导电神经导管。","authors":"Bengisu Topuz, Dincer Gokcen, Halil Murat Aydin","doi":"10.1002/jbm.a.37820","DOIUrl":null,"url":null,"abstract":"<p><p>Many patients suffer from peripheral nerve injury, which can impair their quality of life. Restoring nerve tissue is difficult due to the low ability of nerves to regenerate. Nerve conduits are designed to help peripheral nerve regeneration by providing a scaffold that can match the tissue characteristics, facilitate cellular activities, and be easily implanted. In order to provide a nerve conduit having scaffolding properties, conductance cytocompatibility, we have investigated the potential of channeled structures made of poly (glycerol-sebacate) (PGS) elastomer containing carbon nanofibers (CNFs) in the regeneration of nerve tissue. The first step was to synthesize PGS elastomer and tune its properties to match the nerve tissue. Then, a carbon dioxide laser was used to create micro channels on the elastomer surface for guiding nerve cells. The PGS elastomer was blended with carbon nanofiber (CNF), which was functionalized to bond with the elastomer, to form a conductive structure. The constructs were investigated in terms of cell behavior using PC12 and S42 cell lines. A statistically significant increase in cell proliferation was observed in both cell lines. It was found that the cells began to grow along the canal in places. In terms of elasticity, conductance and cell response, these constructs may be a potential candidate for nerve tissue engineering.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastomeric and Conductive Nerve Conduits From Poly(Glycerol-Sebacate)/Carbon Nanofibers (PGS/CNFs).\",\"authors\":\"Bengisu Topuz, Dincer Gokcen, Halil Murat Aydin\",\"doi\":\"10.1002/jbm.a.37820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many patients suffer from peripheral nerve injury, which can impair their quality of life. Restoring nerve tissue is difficult due to the low ability of nerves to regenerate. Nerve conduits are designed to help peripheral nerve regeneration by providing a scaffold that can match the tissue characteristics, facilitate cellular activities, and be easily implanted. In order to provide a nerve conduit having scaffolding properties, conductance cytocompatibility, we have investigated the potential of channeled structures made of poly (glycerol-sebacate) (PGS) elastomer containing carbon nanofibers (CNFs) in the regeneration of nerve tissue. The first step was to synthesize PGS elastomer and tune its properties to match the nerve tissue. Then, a carbon dioxide laser was used to create micro channels on the elastomer surface for guiding nerve cells. The PGS elastomer was blended with carbon nanofiber (CNF), which was functionalized to bond with the elastomer, to form a conductive structure. The constructs were investigated in terms of cell behavior using PC12 and S42 cell lines. A statistically significant increase in cell proliferation was observed in both cell lines. It was found that the cells began to grow along the canal in places. In terms of elasticity, conductance and cell response, these constructs may be a potential candidate for nerve tissue engineering.</p>\",\"PeriodicalId\":94066,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbm.a.37820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbm.a.37820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastomeric and Conductive Nerve Conduits From Poly(Glycerol-Sebacate)/Carbon Nanofibers (PGS/CNFs).
Many patients suffer from peripheral nerve injury, which can impair their quality of life. Restoring nerve tissue is difficult due to the low ability of nerves to regenerate. Nerve conduits are designed to help peripheral nerve regeneration by providing a scaffold that can match the tissue characteristics, facilitate cellular activities, and be easily implanted. In order to provide a nerve conduit having scaffolding properties, conductance cytocompatibility, we have investigated the potential of channeled structures made of poly (glycerol-sebacate) (PGS) elastomer containing carbon nanofibers (CNFs) in the regeneration of nerve tissue. The first step was to synthesize PGS elastomer and tune its properties to match the nerve tissue. Then, a carbon dioxide laser was used to create micro channels on the elastomer surface for guiding nerve cells. The PGS elastomer was blended with carbon nanofiber (CNF), which was functionalized to bond with the elastomer, to form a conductive structure. The constructs were investigated in terms of cell behavior using PC12 and S42 cell lines. A statistically significant increase in cell proliferation was observed in both cell lines. It was found that the cells began to grow along the canal in places. In terms of elasticity, conductance and cell response, these constructs may be a potential candidate for nerve tissue engineering.