通过混合循序沉淀生物过滤系统处理受限城市空间的雨水。

Chemosphere Pub Date : 2024-11-01 Epub Date: 2024-11-07 DOI:10.1016/j.chemosphere.2024.143696
P Jarosiewicz, A Font-Najera, J Mankiewicz-Boczek, A Chamerska, S Amalfitano, S Fazi, T Jurczak
{"title":"通过混合循序沉淀生物过滤系统处理受限城市空间的雨水。","authors":"P Jarosiewicz, A Font-Najera, J Mankiewicz-Boczek, A Chamerska, S Amalfitano, S Fazi, T Jurczak","doi":"10.1016/j.chemosphere.2024.143696","DOIUrl":null,"url":null,"abstract":"<p><p>Urban areas face increasing pressures on water resources, necessitating innovative approaches to climate adaptation and water quality management. Nature-based Solutions (NbS) offer a sustainable pathway, yet their integration with existing infrastructure in urban settings remains occasional. This study presents a novel hybrid system-Sequential Sedimentation Biofiltration System (SSBS)-designed for stormwater treatment within confined urban spaces. The system was adjusted to the existing stormwater infrastructure by integrating a sedimentation tank (SED), three Permeable Reactive Barriers (PRBs), and a biofiltration zone (BIO). The SSBS was evaluated for its efficiency in removing nutrients and sediments, focusing on the performance of PRBs. Our findings showed limited sediment removal in SED and PRBs due to spatial constraints and a high Hydraulic Loading Rate (HLR = 1.31 m/d), achieving an average of 13.6% Total Suspended Solids (TSS) removal. However, PRBs demonstrated effective removal of ammonium (43.4%) and phosphate (59.3%), potentially due to sorption and biofilm activity, with dominant microbial communities including Proteobacteria, Bacteroidetes, and nutrient-transforming taxa such as Nitrospirae. Interestingly, PRBs increased nitrite levels (57.1%) but did not significantly impact nitrate, chloride, or TSS. The BIO zone further enhanced nutrient retention (56% PO<sub>4</sub>-P) and served as a sink for TSS (52%). This study underscores the potential for integrating traditional urban infrastructure with NbS in a sequential stormwater treatment system, demonstrating its effectiveness in space-constrained urban environments.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":"367 ","pages":"143696"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stormwater treatment in constrained urban spaces through a hybrid Sequential Sedimentation Biofiltration System.\",\"authors\":\"P Jarosiewicz, A Font-Najera, J Mankiewicz-Boczek, A Chamerska, S Amalfitano, S Fazi, T Jurczak\",\"doi\":\"10.1016/j.chemosphere.2024.143696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urban areas face increasing pressures on water resources, necessitating innovative approaches to climate adaptation and water quality management. Nature-based Solutions (NbS) offer a sustainable pathway, yet their integration with existing infrastructure in urban settings remains occasional. This study presents a novel hybrid system-Sequential Sedimentation Biofiltration System (SSBS)-designed for stormwater treatment within confined urban spaces. The system was adjusted to the existing stormwater infrastructure by integrating a sedimentation tank (SED), three Permeable Reactive Barriers (PRBs), and a biofiltration zone (BIO). The SSBS was evaluated for its efficiency in removing nutrients and sediments, focusing on the performance of PRBs. Our findings showed limited sediment removal in SED and PRBs due to spatial constraints and a high Hydraulic Loading Rate (HLR = 1.31 m/d), achieving an average of 13.6% Total Suspended Solids (TSS) removal. However, PRBs demonstrated effective removal of ammonium (43.4%) and phosphate (59.3%), potentially due to sorption and biofilm activity, with dominant microbial communities including Proteobacteria, Bacteroidetes, and nutrient-transforming taxa such as Nitrospirae. Interestingly, PRBs increased nitrite levels (57.1%) but did not significantly impact nitrate, chloride, or TSS. The BIO zone further enhanced nutrient retention (56% PO<sub>4</sub>-P) and served as a sink for TSS (52%). This study underscores the potential for integrating traditional urban infrastructure with NbS in a sequential stormwater treatment system, demonstrating its effectiveness in space-constrained urban environments.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"367 \",\"pages\":\"143696\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.143696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

城市地区面临着越来越大的水资源压力,需要采用创新方法来适应气候和管理水质。基于自然的解决方案(NbS)提供了一种可持续发展的途径,但它们与城市现有基础设施的整合仍是偶尔为之。本研究介绍了一种新型混合系统--等效沉降生物滤池系统(SSBS)--设计用于在狭窄的城市空间内进行雨水处理。该系统通过整合一个沉淀池(SED)、三个可渗透反应屏障(PRB)和一个生物过滤区(BIO),对现有的雨水基础设施进行了调整。对 SSBS 去除营养物和沉积物的效率进行了评估,重点是 PRB 的性能。我们的研究结果表明,由于空间限制和高水力负荷率(HLR = 1.31 m/d),SED 和 PRB 的沉积物去除率有限,平均总悬浮固体(TSS)去除率为 13.6%。不过,PRB 对铵(43.4%)和磷酸盐(59.3%)的去除效果显著,这可能是由于吸附作用和生物膜活性,主要微生物群落包括变形菌、类杆菌和营养转化类群(如硝化细菌)。有趣的是,PRBs 提高了亚硝酸盐水平(57.1%),但对硝酸盐、氯化物或总悬浮固体没有显著影响。生物区进一步提高了养分保留率(PO4-P 为 56%),并成为总悬浮固体(TSS)的吸收汇(52%)。这项研究强调了将传统城市基础设施与 NbS 集成到一个连续的雨水处理系统中的潜力,证明了其在空间有限的城市环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stormwater treatment in constrained urban spaces through a hybrid Sequential Sedimentation Biofiltration System.

Urban areas face increasing pressures on water resources, necessitating innovative approaches to climate adaptation and water quality management. Nature-based Solutions (NbS) offer a sustainable pathway, yet their integration with existing infrastructure in urban settings remains occasional. This study presents a novel hybrid system-Sequential Sedimentation Biofiltration System (SSBS)-designed for stormwater treatment within confined urban spaces. The system was adjusted to the existing stormwater infrastructure by integrating a sedimentation tank (SED), three Permeable Reactive Barriers (PRBs), and a biofiltration zone (BIO). The SSBS was evaluated for its efficiency in removing nutrients and sediments, focusing on the performance of PRBs. Our findings showed limited sediment removal in SED and PRBs due to spatial constraints and a high Hydraulic Loading Rate (HLR = 1.31 m/d), achieving an average of 13.6% Total Suspended Solids (TSS) removal. However, PRBs demonstrated effective removal of ammonium (43.4%) and phosphate (59.3%), potentially due to sorption and biofilm activity, with dominant microbial communities including Proteobacteria, Bacteroidetes, and nutrient-transforming taxa such as Nitrospirae. Interestingly, PRBs increased nitrite levels (57.1%) but did not significantly impact nitrate, chloride, or TSS. The BIO zone further enhanced nutrient retention (56% PO4-P) and served as a sink for TSS (52%). This study underscores the potential for integrating traditional urban infrastructure with NbS in a sequential stormwater treatment system, demonstrating its effectiveness in space-constrained urban environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信