{"title":"利用广义相加模型评估首尔臭氧浓度和超标天数的多层次综合天气惩罚方法(2001-2019 年)。","authors":"Min Young Shin , Hyung Joo Lee","doi":"10.1016/j.chemosphere.2024.143687","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past two decades, ambient O<sub>3</sub> air pollution in Seoul, the capital city of South Korea, has increased. As a secondary air pollutant, O<sub>3</sub> is affected not only by precursor gas emissions but also by meteorological conditions. This study examined the influence of weather changes in Seoul for 2001–2019 on the long-term daily maximum 8-h O<sub>3</sub> concentration (MDA8 O<sub>3</sub>) trends measured at 25 monitoring sites. As the relationship between O<sub>3</sub> and meteorological variables may not be linear, we used a generalized additive model framework to estimate O<sub>3</sub> trends, incorporating quantile and logistic regressions for continuous O<sub>3</sub> data and O<sub>3</sub> exceedance days (>60 ppb), respectively. Over the 19-year period, the O<sub>3</sub> concentrations in Seoul increased by 14.7 (SD = 3.2) and 13.1 (SD = 3.1) ppb before and after adjusting for local meteorology, respectively, resulting in an average weather penalty of 1.55 ppb. Seasonal variations in the penalty were substantial, showing a greater penalty (4.5 ppb) during the warm season (May–October) than during the cold season (November–April). Furthermore, the increase in O<sub>3</sub> concentration was more pronounced on days with comparatively high O<sub>3</sub> levels. During the warm season, the weather penalties on O<sub>3</sub> trends reached 3.7–4.0 ppb on high-O<sub>3</sub> days (75<sup>th</sup>, 95<sup>th</sup>, and 99<sup>th</sup> percentiles). From 2001 to 2019, the O<sub>3</sub> exceedance days started 2.66 days earlier and ended 2.30 days later per year, extending the peak-O<sub>3</sub> season by approximately 89 days in total. Weather changes accelerated the upward trend in the odds ratio of O<sub>3</sub> exceedance days by 3.8 years. Our findings indicate that O<sub>3</sub> exceedance days can occur in nearly all months owing to weather changes. The significant weather penalties on O<sub>3</sub> concentrations and exceedance days emphasize the need for a comprehensive O<sub>3</sub> air pollution mitigation strategy, considering non-emission factors that are increasingly being recognized in the context of climate change.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143687"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive multi-tiered approach to assessing weather penalties on O3 levels and exceedance days in Seoul using generalized additive models (2001–2019)\",\"authors\":\"Min Young Shin , Hyung Joo Lee\",\"doi\":\"10.1016/j.chemosphere.2024.143687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the past two decades, ambient O<sub>3</sub> air pollution in Seoul, the capital city of South Korea, has increased. As a secondary air pollutant, O<sub>3</sub> is affected not only by precursor gas emissions but also by meteorological conditions. This study examined the influence of weather changes in Seoul for 2001–2019 on the long-term daily maximum 8-h O<sub>3</sub> concentration (MDA8 O<sub>3</sub>) trends measured at 25 monitoring sites. As the relationship between O<sub>3</sub> and meteorological variables may not be linear, we used a generalized additive model framework to estimate O<sub>3</sub> trends, incorporating quantile and logistic regressions for continuous O<sub>3</sub> data and O<sub>3</sub> exceedance days (>60 ppb), respectively. Over the 19-year period, the O<sub>3</sub> concentrations in Seoul increased by 14.7 (SD = 3.2) and 13.1 (SD = 3.1) ppb before and after adjusting for local meteorology, respectively, resulting in an average weather penalty of 1.55 ppb. Seasonal variations in the penalty were substantial, showing a greater penalty (4.5 ppb) during the warm season (May–October) than during the cold season (November–April). Furthermore, the increase in O<sub>3</sub> concentration was more pronounced on days with comparatively high O<sub>3</sub> levels. During the warm season, the weather penalties on O<sub>3</sub> trends reached 3.7–4.0 ppb on high-O<sub>3</sub> days (75<sup>th</sup>, 95<sup>th</sup>, and 99<sup>th</sup> percentiles). From 2001 to 2019, the O<sub>3</sub> exceedance days started 2.66 days earlier and ended 2.30 days later per year, extending the peak-O<sub>3</sub> season by approximately 89 days in total. Weather changes accelerated the upward trend in the odds ratio of O<sub>3</sub> exceedance days by 3.8 years. Our findings indicate that O<sub>3</sub> exceedance days can occur in nearly all months owing to weather changes. The significant weather penalties on O<sub>3</sub> concentrations and exceedance days emphasize the need for a comprehensive O<sub>3</sub> air pollution mitigation strategy, considering non-emission factors that are increasingly being recognized in the context of climate change.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"368 \",\"pages\":\"Article 143687\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524025876\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025876","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A comprehensive multi-tiered approach to assessing weather penalties on O3 levels and exceedance days in Seoul using generalized additive models (2001–2019)
Over the past two decades, ambient O3 air pollution in Seoul, the capital city of South Korea, has increased. As a secondary air pollutant, O3 is affected not only by precursor gas emissions but also by meteorological conditions. This study examined the influence of weather changes in Seoul for 2001–2019 on the long-term daily maximum 8-h O3 concentration (MDA8 O3) trends measured at 25 monitoring sites. As the relationship between O3 and meteorological variables may not be linear, we used a generalized additive model framework to estimate O3 trends, incorporating quantile and logistic regressions for continuous O3 data and O3 exceedance days (>60 ppb), respectively. Over the 19-year period, the O3 concentrations in Seoul increased by 14.7 (SD = 3.2) and 13.1 (SD = 3.1) ppb before and after adjusting for local meteorology, respectively, resulting in an average weather penalty of 1.55 ppb. Seasonal variations in the penalty were substantial, showing a greater penalty (4.5 ppb) during the warm season (May–October) than during the cold season (November–April). Furthermore, the increase in O3 concentration was more pronounced on days with comparatively high O3 levels. During the warm season, the weather penalties on O3 trends reached 3.7–4.0 ppb on high-O3 days (75th, 95th, and 99th percentiles). From 2001 to 2019, the O3 exceedance days started 2.66 days earlier and ended 2.30 days later per year, extending the peak-O3 season by approximately 89 days in total. Weather changes accelerated the upward trend in the odds ratio of O3 exceedance days by 3.8 years. Our findings indicate that O3 exceedance days can occur in nearly all months owing to weather changes. The significant weather penalties on O3 concentrations and exceedance days emphasize the need for a comprehensive O3 air pollution mitigation strategy, considering non-emission factors that are increasingly being recognized in the context of climate change.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.