Lan Ai, Tingting Liu, Mingmin Zai, Lizhen Hou, Shiliang Wang
{"title":"聚对苯二甲酸丁二酯涂层碳纤维阵列的制造和电粘附特性。","authors":"Lan Ai, Tingting Liu, Mingmin Zai, Lizhen Hou, Shiliang Wang","doi":"10.1088/1748-3190/ad8c88","DOIUrl":null,"url":null,"abstract":"<p><p>Parylene-coated carbon fiber (CF) arrays with tunable inclination angles and heights were fabricated using oxygen plasma etching of composite wafers with embedded parallel CFs, followed by parylene coating via chemical vapor deposition. The effective elastic modulus of the CF arrays was found to decrease approximately in proportion to the square of the fiber length (5-60<i>μ</i>m), with the parylene coating (∼2<i>μ</i>m) further slightly reducing the modulus. Both experimental measurements and finite element simulations indicated that CF arrays with inclination angles below 75° exhibit ideal contact with glass wafers during electrostatic adhesion. However, the measured electrostatic adhesion between CF arrays and A4 paper was significantly lower than the predicted value for ideal contact, likely due to the porous nature of the paper. Electrostatic chuck prototypes based on the parylene-coated CF arrays demonstrated effective pick-and-place capabilities for A4 paper, plastic films, and glass wafers at voltages ranging from 500 to 900 V, without causing surface damage or leaving residue. These results highlight the potential of the parylene-coated CF arrays for applications in high-precision manufacturing and automated handling systems.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and electroadhesion properties of parylene-coated carbon fiber arrays.\",\"authors\":\"Lan Ai, Tingting Liu, Mingmin Zai, Lizhen Hou, Shiliang Wang\",\"doi\":\"10.1088/1748-3190/ad8c88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parylene-coated carbon fiber (CF) arrays with tunable inclination angles and heights were fabricated using oxygen plasma etching of composite wafers with embedded parallel CFs, followed by parylene coating via chemical vapor deposition. The effective elastic modulus of the CF arrays was found to decrease approximately in proportion to the square of the fiber length (5-60<i>μ</i>m), with the parylene coating (∼2<i>μ</i>m) further slightly reducing the modulus. Both experimental measurements and finite element simulations indicated that CF arrays with inclination angles below 75° exhibit ideal contact with glass wafers during electrostatic adhesion. However, the measured electrostatic adhesion between CF arrays and A4 paper was significantly lower than the predicted value for ideal contact, likely due to the porous nature of the paper. Electrostatic chuck prototypes based on the parylene-coated CF arrays demonstrated effective pick-and-place capabilities for A4 paper, plastic films, and glass wafers at voltages ranging from 500 to 900 V, without causing surface damage or leaving residue. These results highlight the potential of the parylene-coated CF arrays for applications in high-precision manufacturing and automated handling systems.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad8c88\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad8c88","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication and electroadhesion properties of parylene-coated carbon fiber arrays.
Parylene-coated carbon fiber (CF) arrays with tunable inclination angles and heights were fabricated using oxygen plasma etching of composite wafers with embedded parallel CFs, followed by parylene coating via chemical vapor deposition. The effective elastic modulus of the CF arrays was found to decrease approximately in proportion to the square of the fiber length (5-60μm), with the parylene coating (∼2μm) further slightly reducing the modulus. Both experimental measurements and finite element simulations indicated that CF arrays with inclination angles below 75° exhibit ideal contact with glass wafers during electrostatic adhesion. However, the measured electrostatic adhesion between CF arrays and A4 paper was significantly lower than the predicted value for ideal contact, likely due to the porous nature of the paper. Electrostatic chuck prototypes based on the parylene-coated CF arrays demonstrated effective pick-and-place capabilities for A4 paper, plastic films, and glass wafers at voltages ranging from 500 to 900 V, without causing surface damage or leaving residue. These results highlight the potential of the parylene-coated CF arrays for applications in high-precision manufacturing and automated handling systems.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.