{"title":"具有消失物种的大型随机 Lotka-Volterra 系统的均衡:一种数学方法。","authors":"Imane Akjouj, Walid Hachem, Mylène Maïda, Jamal Najim","doi":"10.1007/s00285-024-02155-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ecosystems with a large number of species are often modelled as Lotka-Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equilibria of large random Lotka-Volterra systems with vanishing species: a mathematical approach.\",\"authors\":\"Imane Akjouj, Walid Hachem, Mylène Maïda, Jamal Najim\",\"doi\":\"10.1007/s00285-024-02155-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ecosystems with a large number of species are often modelled as Lotka-Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02155-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02155-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Equilibria of large random Lotka-Volterra systems with vanishing species: a mathematical approach.
Ecosystems with a large number of species are often modelled as Lotka-Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.