利用 FLORAL 增强微生物特征选择的可扩展对数比率套索回归。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-11-18 Epub Date: 2024-11-07 DOI:10.1016/j.crmeth.2024.100899
Teng Fei, Tyler Funnell, Nicholas R Waters, Sandeep S Raj, Mirae Baichoo, Keimya Sadeghi, Anqi Dai, Oriana Miltiadous, Roni Shouval, Meng Lv, Jonathan U Peled, Doris M Ponce, Miguel-Angel Perales, Mithat Gönen, Marcel R M van den Brink
{"title":"利用 FLORAL 增强微生物特征选择的可扩展对数比率套索回归。","authors":"Teng Fei, Tyler Funnell, Nicholas R Waters, Sandeep S Raj, Mirae Baichoo, Keimya Sadeghi, Anqi Dai, Oriana Miltiadous, Roni Shouval, Meng Lv, Jonathan U Peled, Doris M Ponce, Miguel-Angel Perales, Mithat Gönen, Marcel R M van den Brink","doi":"10.1016/j.crmeth.2024.100899","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest, while existing computational methods do not satisfactorily account for complex survival endpoints, longitudinal samples, and taxa-specific sequencing biases. We present FLORAL, an open-source tool to perform scalable log-ratio lasso regression and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes, with compatibility for longitudinal microbiome data as time-dependent covariates. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for enhanced false-positive control. In extensive simulation and real-data analyses, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better sensitivity over popular differential abundance testing methods for datasets with smaller sample sizes. In a survival analysis of allogeneic hematopoietic cell transplant recipients, FLORAL demonstrated considerable improvement in microbial feature selection by utilizing longitudinal microbiome data over solely using baseline microbiome data.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100899"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable log-ratio lasso regression for enhanced microbial feature selection with FLORAL.\",\"authors\":\"Teng Fei, Tyler Funnell, Nicholas R Waters, Sandeep S Raj, Mirae Baichoo, Keimya Sadeghi, Anqi Dai, Oriana Miltiadous, Roni Shouval, Meng Lv, Jonathan U Peled, Doris M Ponce, Miguel-Angel Perales, Mithat Gönen, Marcel R M van den Brink\",\"doi\":\"10.1016/j.crmeth.2024.100899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest, while existing computational methods do not satisfactorily account for complex survival endpoints, longitudinal samples, and taxa-specific sequencing biases. We present FLORAL, an open-source tool to perform scalable log-ratio lasso regression and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes, with compatibility for longitudinal microbiome data as time-dependent covariates. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for enhanced false-positive control. In extensive simulation and real-data analyses, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better sensitivity over popular differential abundance testing methods for datasets with smaller sample sizes. In a survival analysis of allogeneic hematopoietic cell transplant recipients, FLORAL demonstrated considerable improvement in microbial feature selection by utilizing longitudinal microbiome data over solely using baseline microbiome data.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"100899\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

从高通量微生物组数据中识别患者预后的预测性生物标记物备受关注,而现有的计算方法并不能令人满意地考虑复杂的生存终点、纵向样本和特定分类群的测序偏差。我们提出的 FLORAL 是一种开源工具,用于对连续、二元、时间到事件和竞争风险结果进行可扩展的对数比率拉索回归和微生物特征选择,并兼容作为时间依赖协变量的纵向微生物组数据。所提出的方法采用了零和约束优化问题的增强拉格朗日算法,同时实现了两阶段筛选过程,以加强假阳性控制。在大量的模拟和真实数据分析中,FLORAL 与其他基于套索的方法相比,持续实现了更好的假阳性控制,在样本量较小的数据集上,其灵敏度也优于流行的差分丰度检验方法。在对异基因造血细胞移植受者的生存分析中,FLORAL 通过利用纵向微生物组数据,在微生物特征选择方面比单纯利用基线微生物组数据有了很大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable log-ratio lasso regression for enhanced microbial feature selection with FLORAL.

Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest, while existing computational methods do not satisfactorily account for complex survival endpoints, longitudinal samples, and taxa-specific sequencing biases. We present FLORAL, an open-source tool to perform scalable log-ratio lasso regression and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes, with compatibility for longitudinal microbiome data as time-dependent covariates. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for enhanced false-positive control. In extensive simulation and real-data analyses, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better sensitivity over popular differential abundance testing methods for datasets with smaller sample sizes. In a survival analysis of allogeneic hematopoietic cell transplant recipients, FLORAL demonstrated considerable improvement in microbial feature selection by utilizing longitudinal microbiome data over solely using baseline microbiome data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信