揭示结构表面流动沸腾传热增强的基本原理。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mohammad Jalal Inanlu, Vishwanath Ganesan, Nithin Vinod Upot, Chi Wang, Zan Suo, Kazi Fazle Rabbi, Pouya Kabirzadeh, Alireza Bakhshi, Wuchen Fu, Tarandeep Singh Thukral, Valentin Belosludtsev, Jiaqi Li, Nenad Miljkovic
{"title":"揭示结构表面流动沸腾传热增强的基本原理。","authors":"Mohammad Jalal Inanlu,&nbsp;Vishwanath Ganesan,&nbsp;Nithin Vinod Upot,&nbsp;Chi Wang,&nbsp;Zan Suo,&nbsp;Kazi Fazle Rabbi,&nbsp;Pouya Kabirzadeh,&nbsp;Alireza Bakhshi,&nbsp;Wuchen Fu,&nbsp;Tarandeep Singh Thukral,&nbsp;Valentin Belosludtsev,&nbsp;Jiaqi Li,&nbsp;Nenad Miljkovic","doi":"10.1126/sciadv.adp8632","DOIUrl":null,"url":null,"abstract":"<div >Micro- and nanostructured surfaces offer the potential to enhance two-phase heat transfer. However, the mechanisms behind these enhancements are not well-understood due to insufficient diagnostic methods, leading to reliance on trial-and-error surface development. We introduce in situ boroscopy to investigate microscale bubble dynamics during flow boiling nucleation and subsequent flow regime development. This method was applied in saturated flow boiling experiments within chemically etched aluminum and copper tubes. Although the surfaces have self-similar surface structures, our findings revealed varied heat transfer coefficient enhancements, with increases of up to 391% on aluminum and 41% on copper. Using boroscopy, we identified key mechanisms of heat transfer enhancement. We further used mercury porosimetry to determine the impact of pore size distribution on thermal performance. The boroscopy technique introduced here not only elucidates the underlying processes of flow boiling heat transfer enhancement but also has potential applications for the study of other two-phase phenomena.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546817/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling the fundamentals of flow boiling heat transfer enhancement on structured surfaces\",\"authors\":\"Mohammad Jalal Inanlu,&nbsp;Vishwanath Ganesan,&nbsp;Nithin Vinod Upot,&nbsp;Chi Wang,&nbsp;Zan Suo,&nbsp;Kazi Fazle Rabbi,&nbsp;Pouya Kabirzadeh,&nbsp;Alireza Bakhshi,&nbsp;Wuchen Fu,&nbsp;Tarandeep Singh Thukral,&nbsp;Valentin Belosludtsev,&nbsp;Jiaqi Li,&nbsp;Nenad Miljkovic\",\"doi\":\"10.1126/sciadv.adp8632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Micro- and nanostructured surfaces offer the potential to enhance two-phase heat transfer. However, the mechanisms behind these enhancements are not well-understood due to insufficient diagnostic methods, leading to reliance on trial-and-error surface development. We introduce in situ boroscopy to investigate microscale bubble dynamics during flow boiling nucleation and subsequent flow regime development. This method was applied in saturated flow boiling experiments within chemically etched aluminum and copper tubes. Although the surfaces have self-similar surface structures, our findings revealed varied heat transfer coefficient enhancements, with increases of up to 391% on aluminum and 41% on copper. Using boroscopy, we identified key mechanisms of heat transfer enhancement. We further used mercury porosimetry to determine the impact of pore size distribution on thermal performance. The boroscopy technique introduced here not only elucidates the underlying processes of flow boiling heat transfer enhancement but also has potential applications for the study of other two-phase phenomena.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adp8632\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp8632","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微结构和纳米结构表面具有增强两相传热的潜力。然而,由于缺乏足够的诊断方法,这些增强作用背后的机理还没有得到很好的理解,因此只能依赖于试验和错误的表面开发。我们引入了原位硼镜技术来研究流动沸腾成核过程中的微观气泡动力学以及随后的流态发展。这种方法被应用于化学蚀刻铝管和铜管内的饱和流沸腾实验。虽然表面具有自相似的表面结构,但我们的研究结果显示传热系数有不同程度的提高,铝和铜的传热系数分别提高了 391% 和 41%。通过硼镜检查,我们确定了传热增强的关键机制。我们还进一步使用汞孔测定法来确定孔径分布对热性能的影响。这里介绍的硼镜技术不仅阐明了流动沸腾传热增强的基本过程,而且还具有研究其他两相现象的潜在应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the fundamentals of flow boiling heat transfer enhancement on structured surfaces
Micro- and nanostructured surfaces offer the potential to enhance two-phase heat transfer. However, the mechanisms behind these enhancements are not well-understood due to insufficient diagnostic methods, leading to reliance on trial-and-error surface development. We introduce in situ boroscopy to investigate microscale bubble dynamics during flow boiling nucleation and subsequent flow regime development. This method was applied in saturated flow boiling experiments within chemically etched aluminum and copper tubes. Although the surfaces have self-similar surface structures, our findings revealed varied heat transfer coefficient enhancements, with increases of up to 391% on aluminum and 41% on copper. Using boroscopy, we identified key mechanisms of heat transfer enhancement. We further used mercury porosimetry to determine the impact of pore size distribution on thermal performance. The boroscopy technique introduced here not only elucidates the underlying processes of flow boiling heat transfer enhancement but also has potential applications for the study of other two-phase phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信