Batoul Chouaib, Alban Desoutter, Frédéric Cuisinier, Pierre-Yves Collart-Dutilleul
{"title":"牙髓干细胞条件培养基可促进成骨细胞分化和骨再生","authors":"Batoul Chouaib, Alban Desoutter, Frédéric Cuisinier, Pierre-Yves Collart-Dutilleul","doi":"10.1007/s12015-024-10823-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cell-free approaches, utilizing mesenchymal stem cell secretome, have promising prospects in various fields of regenerative medicine. In this study, we examined in vitro and in vivo the potential of dental pulp stem cell-conditioned medium (DPSC-CM) for bone regeneration.</p><p><strong>Methods: </strong>The secretome of undifferentiated stem cells from dental pulp were collected, and the effects of this DPSC-CM were assessed for osteodifferentiation of osteoblast-like cells (MG-63) and osteoblasts deriving from DPSC. Cell proliferation, alkaline phosphatase (ALP) activity, gene expression of Runt-related transcription factor 2 (Runx2), Bone Sialoprotein (BSP), Osteocalcin (OCN), and extracellular matrix mineralization were evaluated. The rat caudal vertebrae critical size defect model was to investigate the effect of DPSC-CM in vivo.</p><p><strong>Results: </strong>Results showed that DPSC-CM induced cell growth, and increased ALP activity and the expression of key marker genes at an early stage of osteoblastic differentiation compared to control. A rat bone defect model was used to illustrate the effect of DPSC-CM in vivo. The bone density within the defects were improved using conditioned medium, even though there was no significant difference between the control and DPSC-CM groups. The analysis of DPSC-CM by human growth factor antibody array revealed the presence of several factors involved in osteogenesis.</p><p><strong>Conclusion: </strong>Taken together, these findings indicate that DPSC-CM is a promising therapeutic candidate for bone regenerative therapy, accelerating the maturation of osteoblastic cells. And even though safety and efficiency of DPSC-CM have to be confirmed in preclinical studies, these results represent a first step toward clinical application.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dental Pulp Stem Cell Conditioned Medium Enhance Osteoblastic Differentiation and Bone Regeneration.\",\"authors\":\"Batoul Chouaib, Alban Desoutter, Frédéric Cuisinier, Pierre-Yves Collart-Dutilleul\",\"doi\":\"10.1007/s12015-024-10823-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cell-free approaches, utilizing mesenchymal stem cell secretome, have promising prospects in various fields of regenerative medicine. In this study, we examined in vitro and in vivo the potential of dental pulp stem cell-conditioned medium (DPSC-CM) for bone regeneration.</p><p><strong>Methods: </strong>The secretome of undifferentiated stem cells from dental pulp were collected, and the effects of this DPSC-CM were assessed for osteodifferentiation of osteoblast-like cells (MG-63) and osteoblasts deriving from DPSC. Cell proliferation, alkaline phosphatase (ALP) activity, gene expression of Runt-related transcription factor 2 (Runx2), Bone Sialoprotein (BSP), Osteocalcin (OCN), and extracellular matrix mineralization were evaluated. The rat caudal vertebrae critical size defect model was to investigate the effect of DPSC-CM in vivo.</p><p><strong>Results: </strong>Results showed that DPSC-CM induced cell growth, and increased ALP activity and the expression of key marker genes at an early stage of osteoblastic differentiation compared to control. A rat bone defect model was used to illustrate the effect of DPSC-CM in vivo. The bone density within the defects were improved using conditioned medium, even though there was no significant difference between the control and DPSC-CM groups. The analysis of DPSC-CM by human growth factor antibody array revealed the presence of several factors involved in osteogenesis.</p><p><strong>Conclusion: </strong>Taken together, these findings indicate that DPSC-CM is a promising therapeutic candidate for bone regenerative therapy, accelerating the maturation of osteoblastic cells. And even though safety and efficiency of DPSC-CM have to be confirmed in preclinical studies, these results represent a first step toward clinical application.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10823-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10823-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Dental Pulp Stem Cell Conditioned Medium Enhance Osteoblastic Differentiation and Bone Regeneration.
Background: Cell-free approaches, utilizing mesenchymal stem cell secretome, have promising prospects in various fields of regenerative medicine. In this study, we examined in vitro and in vivo the potential of dental pulp stem cell-conditioned medium (DPSC-CM) for bone regeneration.
Methods: The secretome of undifferentiated stem cells from dental pulp were collected, and the effects of this DPSC-CM were assessed for osteodifferentiation of osteoblast-like cells (MG-63) and osteoblasts deriving from DPSC. Cell proliferation, alkaline phosphatase (ALP) activity, gene expression of Runt-related transcription factor 2 (Runx2), Bone Sialoprotein (BSP), Osteocalcin (OCN), and extracellular matrix mineralization were evaluated. The rat caudal vertebrae critical size defect model was to investigate the effect of DPSC-CM in vivo.
Results: Results showed that DPSC-CM induced cell growth, and increased ALP activity and the expression of key marker genes at an early stage of osteoblastic differentiation compared to control. A rat bone defect model was used to illustrate the effect of DPSC-CM in vivo. The bone density within the defects were improved using conditioned medium, even though there was no significant difference between the control and DPSC-CM groups. The analysis of DPSC-CM by human growth factor antibody array revealed the presence of several factors involved in osteogenesis.
Conclusion: Taken together, these findings indicate that DPSC-CM is a promising therapeutic candidate for bone regenerative therapy, accelerating the maturation of osteoblastic cells. And even though safety and efficiency of DPSC-CM have to be confirmed in preclinical studies, these results represent a first step toward clinical application.
期刊介绍:
The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication:
i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field.
ii) full length and short reports presenting original experimental work.
iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics.
iv) papers focused on diseases of stem cells.
v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale.
vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research.
vii) letters to the editor and correspondence.
In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on:
i) the role of adult stem cells in tissue regeneration;
ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development;
iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells;
iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis;
v) the role of stem cells in aging processes and cancerogenesis.