从诱导多能干细胞中衍生出可移植的人类甲状腺滤泡上皮细胞。

IF 5.9 2区 医学 Q1 CELL & TISSUE ENGINEERING
Stem Cell Reports Pub Date : 2024-12-10 Epub Date: 2024-11-07 DOI:10.1016/j.stemcr.2024.10.004
Hendrik J Undeutsch, Alberto Posabella, Andrea B Alber, Pushpinder S Bawa, Carlos Villacorta-Martin, Feiya Wang, Laertis Ikonomou, Darrell N Kotton, Anthony N Hollenberg
{"title":"从诱导多能干细胞中衍生出可移植的人类甲状腺滤泡上皮细胞。","authors":"Hendrik J Undeutsch, Alberto Posabella, Andrea B Alber, Pushpinder S Bawa, Carlos Villacorta-Martin, Feiya Wang, Laertis Ikonomou, Darrell N Kotton, Anthony N Hollenberg","doi":"10.1016/j.stemcr.2024.10.004","DOIUrl":null,"url":null,"abstract":"<p><p>The production of mature functioning thyroid follicular cells (TFCs) from human induced pluripotent stem cells (iPSCs) is critical for potential novel therapeutic approaches to post-surgical and congenital hypothyroidism. To accomplish this, we developed a novel human iPSC line that expresses fluorophores targeted to the NKX2-1 and PAX8 loci, allowing for the identification and purification of cells destined to become TFCs. Optimizing a sequence of defined, serum-free media to promote stepwise developmental directed differentiation, we found that bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2) stimulated lineage specification into TFCs from multiple iPSC lines. Single-cell RNA sequencing demonstrated that BMP4 withdrawal after lineage specification promoted TFC maturation, with mature TFCs representing the majority of cells present within 1 month. After xenotransplantation into athyreotic immunodeficient mice, engrafted cells exhibited thyroid follicular organization with thyroglobulin protein detected in the lumens of NKX2-1-positive follicles. While our iPSC-derived TFCs presented durable expression of thyroid-specific proteins, they were unable to rescue hypothyroidism in vivo.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1690-1705"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of transplantable human thyroid follicular epithelial cells from induced pluripotent stem cells.\",\"authors\":\"Hendrik J Undeutsch, Alberto Posabella, Andrea B Alber, Pushpinder S Bawa, Carlos Villacorta-Martin, Feiya Wang, Laertis Ikonomou, Darrell N Kotton, Anthony N Hollenberg\",\"doi\":\"10.1016/j.stemcr.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The production of mature functioning thyroid follicular cells (TFCs) from human induced pluripotent stem cells (iPSCs) is critical for potential novel therapeutic approaches to post-surgical and congenital hypothyroidism. To accomplish this, we developed a novel human iPSC line that expresses fluorophores targeted to the NKX2-1 and PAX8 loci, allowing for the identification and purification of cells destined to become TFCs. Optimizing a sequence of defined, serum-free media to promote stepwise developmental directed differentiation, we found that bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2) stimulated lineage specification into TFCs from multiple iPSC lines. Single-cell RNA sequencing demonstrated that BMP4 withdrawal after lineage specification promoted TFC maturation, with mature TFCs representing the majority of cells present within 1 month. After xenotransplantation into athyreotic immunodeficient mice, engrafted cells exhibited thyroid follicular organization with thyroglobulin protein detected in the lumens of NKX2-1-positive follicles. While our iPSC-derived TFCs presented durable expression of thyroid-specific proteins, they were unable to rescue hypothyroidism in vivo.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":\" \",\"pages\":\"1690-1705\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2024.10.004\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.10.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

从人类诱导多能干细胞(iPSC)中培育出功能成熟的甲状腺滤泡细胞(TFC),对于手术后和先天性甲状腺功能减退症的潜在新型治疗方法至关重要。为了实现这一目标,我们开发了一种新型人类 iPSC 细胞系,该细胞系能表达针对 NKX2-1 和 PAX8 基因座的荧光团,从而识别和纯化注定要成为 TFC 的细胞。我们发现,骨形态发生蛋白4(BMP4)和成纤维细胞生长因子2(FGF2)能刺激多个iPSC品系的TFC细胞系分化。单细胞RNA测序表明,在品系分化后撤除BMP4可促进TFC的成熟,1个月内成熟的TFC占细胞总数的大多数。异种移植到无甲状腺免疫缺陷小鼠体内后,移植细胞表现出甲状腺滤泡组织,在NKX2-1阳性滤泡的管腔中检测到甲状腺球蛋白蛋白。虽然我们的iPSC衍生TFCs能持久表达甲状腺特异性蛋白,但它们无法挽救体内甲状腺功能减退症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation of transplantable human thyroid follicular epithelial cells from induced pluripotent stem cells.

The production of mature functioning thyroid follicular cells (TFCs) from human induced pluripotent stem cells (iPSCs) is critical for potential novel therapeutic approaches to post-surgical and congenital hypothyroidism. To accomplish this, we developed a novel human iPSC line that expresses fluorophores targeted to the NKX2-1 and PAX8 loci, allowing for the identification and purification of cells destined to become TFCs. Optimizing a sequence of defined, serum-free media to promote stepwise developmental directed differentiation, we found that bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2) stimulated lineage specification into TFCs from multiple iPSC lines. Single-cell RNA sequencing demonstrated that BMP4 withdrawal after lineage specification promoted TFC maturation, with mature TFCs representing the majority of cells present within 1 month. After xenotransplantation into athyreotic immunodeficient mice, engrafted cells exhibited thyroid follicular organization with thyroglobulin protein detected in the lumens of NKX2-1-positive follicles. While our iPSC-derived TFCs presented durable expression of thyroid-specific proteins, they were unable to rescue hypothyroidism in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信