美国具有社会网络的大规模地理意义上的合成人口。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Na Jiang, Fuzhen Yin, Boyu Wang, Andrew T Crooks
{"title":"美国具有社会网络的大规模地理意义上的合成人口。","authors":"Na Jiang, Fuzhen Yin, Boyu Wang, Andrew T Crooks","doi":"10.1038/s41597-024-03970-1","DOIUrl":null,"url":null,"abstract":"<p><p>Within the geo-simulation research domain, micro-simulation and agent-based modeling often require the creation of synthetic populations. Creating such data is a time-consuming task and often lacks social networks, which are crucial for studying human interactions (e.g., disease spread, disaster response) while at the same time impacting decision-making. We address these challenges by introducing a Python based method that uses the open data including that from 2020 U.S. Census data to generate a large-scale realistic geographically explicit synthetic population for America's 50 states and Washington D.C. along with the stylized social networks (e.g., home, work and schools). The resulting synthetic population can be utilized within various geo-simulation approaches (e.g., agent-based modeling), exploring the emergence of complex phenomena through human interactions and further fostering the study of urban digital twins.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1204"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543939/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Large-Scale Geographically Explicit Synthetic Population with Social Networks for the United States.\",\"authors\":\"Na Jiang, Fuzhen Yin, Boyu Wang, Andrew T Crooks\",\"doi\":\"10.1038/s41597-024-03970-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Within the geo-simulation research domain, micro-simulation and agent-based modeling often require the creation of synthetic populations. Creating such data is a time-consuming task and often lacks social networks, which are crucial for studying human interactions (e.g., disease spread, disaster response) while at the same time impacting decision-making. We address these challenges by introducing a Python based method that uses the open data including that from 2020 U.S. Census data to generate a large-scale realistic geographically explicit synthetic population for America's 50 states and Washington D.C. along with the stylized social networks (e.g., home, work and schools). The resulting synthetic population can be utilized within various geo-simulation approaches (e.g., agent-based modeling), exploring the emergence of complex phenomena through human interactions and further fostering the study of urban digital twins.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1204\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-03970-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41597-024-03970-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在地理模拟研究领域,微观模拟和基于代理的建模往往需要创建合成人口。创建此类数据是一项耗时的任务,而且往往缺乏社会网络,而社会网络对于研究人类互动(如疾病传播、灾难响应)至关重要,同时也会影响决策。为了应对这些挑战,我们引入了一种基于 Python 的方法,该方法使用包括 2020 年美国人口普查数据在内的开放数据,为美国 50 个州和华盛顿特区生成大规模现实地理明确的合成人口以及风格化的社交网络(如家庭、工作和学校)。由此产生的合成人口可用于各种地理模拟方法(如基于代理的建模),探索通过人类互动产生的复杂现象,并进一步促进对城市数字双胞胎的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Large-Scale Geographically Explicit Synthetic Population with Social Networks for the United States.

Within the geo-simulation research domain, micro-simulation and agent-based modeling often require the creation of synthetic populations. Creating such data is a time-consuming task and often lacks social networks, which are crucial for studying human interactions (e.g., disease spread, disaster response) while at the same time impacting decision-making. We address these challenges by introducing a Python based method that uses the open data including that from 2020 U.S. Census data to generate a large-scale realistic geographically explicit synthetic population for America's 50 states and Washington D.C. along with the stylized social networks (e.g., home, work and schools). The resulting synthetic population can be utilized within various geo-simulation approaches (e.g., agent-based modeling), exploring the emergence of complex phenomena through human interactions and further fostering the study of urban digital twins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信