Ahmed Alshaikh, Jun Peng, Robert Zierold, Robert H Blick, Christian Heyn
{"title":"使用透明掺铝氧化锌栅极实现砷化镓锥壳量子点中从强到非对称强-弱禁闭的垂直电场诱导切换。","authors":"Ahmed Alshaikh, Jun Peng, Robert Zierold, Robert H Blick, Christian Heyn","doi":"10.3390/nano14211712","DOIUrl":null,"url":null,"abstract":"<p><p>The first part of this work evaluates Al-doped ZnO (AZO) as an optically transparent top-gate material for studies on semiconductor quantum dots. In comparison with conventional Ti gates, samples with AZO gates demonstrate a more than three times higher intensity in the quantum dot emission under comparable excitation conditions. On the other hand, charges inside a process-induced oxide layer at the interface to the semiconductor cause artifacts at gate voltages above U≈ 1 V. The second part describes an optical and simulation study of a vertical electric-field (<i>F</i>)-induced switching from a strong to an asymmetric strong-weak confinement in GaAs cone-shell quantum dots (CSQDs), where the charge carrier probability densities are localized on the surface of a cone. These experiments are performed at low <i>U</i> and show no indications of an influence of interface charges. For a large <i>F</i>, the measured radiative lifetimes are substantially shorter compared with simulation results. We attribute this discrepancy to an <i>F</i>-induced transformation of the shape of the hole probability density. In detail, an increasing <i>F</i> pushes the hole into the wing part of a CSQD, where it forms a quantum ring. Accordingly, the confinement of the hole is changed from strong, which is assumed in the simulations, to weak, where the local radius is larger than the bulk exciton Bohr radius. In contrast to the hole, an increasing <i>F</i> pushes the electron into the CSQD tip, where it remains in a strong confinement. This means the radiative lifetime for large <i>F</i> is given by an asymmetric confinement with a strongly confined electron and a hole in a weak confinement. To our knowledge, this asymmetric strong-weak confinement represents a novel kind of quantum mechanical confinement and has not been observed so far. Furthermore, the observed weak confinement for the hole represents a confirmation of the theoretically predicted transformation of the hole probability density from a quantum dot into a quantum ring. For such quantum rings, application as storage for photo-excited charge carriers is predicted, which can be interesting for future quantum photonic integrated circuits.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vertical Electric-Field-Induced Switching from Strong to Asymmetric Strong-Weak Confinement in GaAs Cone-Shell Quantum Dots Using Transparent Al-Doped ZnO Gates.\",\"authors\":\"Ahmed Alshaikh, Jun Peng, Robert Zierold, Robert H Blick, Christian Heyn\",\"doi\":\"10.3390/nano14211712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The first part of this work evaluates Al-doped ZnO (AZO) as an optically transparent top-gate material for studies on semiconductor quantum dots. In comparison with conventional Ti gates, samples with AZO gates demonstrate a more than three times higher intensity in the quantum dot emission under comparable excitation conditions. On the other hand, charges inside a process-induced oxide layer at the interface to the semiconductor cause artifacts at gate voltages above U≈ 1 V. The second part describes an optical and simulation study of a vertical electric-field (<i>F</i>)-induced switching from a strong to an asymmetric strong-weak confinement in GaAs cone-shell quantum dots (CSQDs), where the charge carrier probability densities are localized on the surface of a cone. These experiments are performed at low <i>U</i> and show no indications of an influence of interface charges. For a large <i>F</i>, the measured radiative lifetimes are substantially shorter compared with simulation results. We attribute this discrepancy to an <i>F</i>-induced transformation of the shape of the hole probability density. In detail, an increasing <i>F</i> pushes the hole into the wing part of a CSQD, where it forms a quantum ring. Accordingly, the confinement of the hole is changed from strong, which is assumed in the simulations, to weak, where the local radius is larger than the bulk exciton Bohr radius. In contrast to the hole, an increasing <i>F</i> pushes the electron into the CSQD tip, where it remains in a strong confinement. This means the radiative lifetime for large <i>F</i> is given by an asymmetric confinement with a strongly confined electron and a hole in a weak confinement. To our knowledge, this asymmetric strong-weak confinement represents a novel kind of quantum mechanical confinement and has not been observed so far. Furthermore, the observed weak confinement for the hole represents a confirmation of the theoretically predicted transformation of the hole probability density from a quantum dot into a quantum ring. For such quantum rings, application as storage for photo-excited charge carriers is predicted, which can be interesting for future quantum photonic integrated circuits.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211712\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211712","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
这项工作的第一部分评估了铝掺杂氧化锌(AZO)作为研究半导体量子点的光学透明顶栅材料的性能。与传统的钛栅相比,采用 AZO 栅极的样品在可比激发条件下的量子点发射强度高出三倍多。另一方面,在栅极电压高于 U≈ 1 V 时,半导体界面上工艺诱导的氧化层内的电荷会造成伪影。第二部分描述了对垂直电场(F)诱导的砷化镓锥壳量子点(CSQDs)从强束缚到非对称强弱束缚切换的光学和模拟研究,其中电荷载流子概率密度定位在锥体表面。这些实验是在低 U 条件下进行的,没有显示出界面电荷的影响。在 F 较大时,测得的辐射寿命比模拟结果短得多。我们将这种差异归因于 F 引起的空穴概率密度形状的变化。具体来说,F 的增加会将空穴推向 CSQD 的翼部,在那里形成一个量子环。因此,空穴的束缚从模拟中假定的强束缚变为弱束缚,即局部半径大于体激子玻尔半径。与空穴相反,F 的增大会将电子推向 CSQD 顶端,使其处于强束缚状态。这意味着大 F 值的辐射寿命是由强束缚电子和弱束缚空穴的不对称束缚给出的。据我们所知,这种不对称的强-弱禁闭是一种新的量子力学禁闭,迄今为止尚未被观测到。此外,观测到的空穴弱禁闭证实了理论上预测的空穴概率密度从量子点到量子环的转变。对于这种量子环,可以预测其应用于存储光激发的电荷载流子,这对未来的量子光子集成电路很有意义。
Vertical Electric-Field-Induced Switching from Strong to Asymmetric Strong-Weak Confinement in GaAs Cone-Shell Quantum Dots Using Transparent Al-Doped ZnO Gates.
The first part of this work evaluates Al-doped ZnO (AZO) as an optically transparent top-gate material for studies on semiconductor quantum dots. In comparison with conventional Ti gates, samples with AZO gates demonstrate a more than three times higher intensity in the quantum dot emission under comparable excitation conditions. On the other hand, charges inside a process-induced oxide layer at the interface to the semiconductor cause artifacts at gate voltages above U≈ 1 V. The second part describes an optical and simulation study of a vertical electric-field (F)-induced switching from a strong to an asymmetric strong-weak confinement in GaAs cone-shell quantum dots (CSQDs), where the charge carrier probability densities are localized on the surface of a cone. These experiments are performed at low U and show no indications of an influence of interface charges. For a large F, the measured radiative lifetimes are substantially shorter compared with simulation results. We attribute this discrepancy to an F-induced transformation of the shape of the hole probability density. In detail, an increasing F pushes the hole into the wing part of a CSQD, where it forms a quantum ring. Accordingly, the confinement of the hole is changed from strong, which is assumed in the simulations, to weak, where the local radius is larger than the bulk exciton Bohr radius. In contrast to the hole, an increasing F pushes the electron into the CSQD tip, where it remains in a strong confinement. This means the radiative lifetime for large F is given by an asymmetric confinement with a strongly confined electron and a hole in a weak confinement. To our knowledge, this asymmetric strong-weak confinement represents a novel kind of quantum mechanical confinement and has not been observed so far. Furthermore, the observed weak confinement for the hole represents a confirmation of the theoretically predicted transformation of the hole probability density from a quantum dot into a quantum ring. For such quantum rings, application as storage for photo-excited charge carriers is predicted, which can be interesting for future quantum photonic integrated circuits.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.