二维磁性材料的最新进展。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-11-01 DOI:10.3390/nano14211759
Guangchao Shi, Nan Huang, Jingyuan Qiao, Xuewen Zhang, Fulong Hu, Hanwei Hu, Xinyu Zhang, Jingzhi Shang
{"title":"二维磁性材料的最新进展。","authors":"Guangchao Shi, Nan Huang, Jingyuan Qiao, Xuewen Zhang, Fulong Hu, Hanwei Hu, Xinyu Zhang, Jingzhi Shang","doi":"10.3390/nano14211759","DOIUrl":null,"url":null,"abstract":"<p><p>The giant magnetoresistance effect in two-dimensional (2D) magnetic materials has sparked substantial interest in various fields; including sensing; data storage; electronics; and spintronics. Their unique 2D layered structures allow for the manifestation of distinctive physical properties and precise performance regulation under different conditions. In this review, we present an overview of this rapidly developing research area. Firstly, these 2D magnetic materials are catalogued according to magnetic coupling types. Then, several vital effects in 2D magnets are highlighted together with theoretical investigation, such as magnetic circular dichroism, magneto-optical Kerr effect, and anomalous Hall effect. After that, we forecast the potential applications of 2D magnetic materials for spintronic devices. Lastly, research advances in the attracting magnons, skyrmions and other spin textures in 2D magnets are discussed.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548008/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent Progress in Two-Dimensional Magnetic Materials.\",\"authors\":\"Guangchao Shi, Nan Huang, Jingyuan Qiao, Xuewen Zhang, Fulong Hu, Hanwei Hu, Xinyu Zhang, Jingzhi Shang\",\"doi\":\"10.3390/nano14211759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The giant magnetoresistance effect in two-dimensional (2D) magnetic materials has sparked substantial interest in various fields; including sensing; data storage; electronics; and spintronics. Their unique 2D layered structures allow for the manifestation of distinctive physical properties and precise performance regulation under different conditions. In this review, we present an overview of this rapidly developing research area. Firstly, these 2D magnetic materials are catalogued according to magnetic coupling types. Then, several vital effects in 2D magnets are highlighted together with theoretical investigation, such as magnetic circular dichroism, magneto-optical Kerr effect, and anomalous Hall effect. After that, we forecast the potential applications of 2D magnetic materials for spintronic devices. Lastly, research advances in the attracting magnons, skyrmions and other spin textures in 2D magnets are discussed.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211759\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211759","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)磁性材料中的巨磁电阻效应在传感、数据存储、电子学和自旋电子学等多个领域引发了极大的兴趣。二维磁性材料独特的二维层状结构使其能够在不同条件下表现出独特的物理特性和精确的性能调节。在本综述中,我们将概述这一快速发展的研究领域。首先,根据磁耦合类型对这些二维磁性材料进行了分类。然后,结合理论研究重点介绍了二维磁体中的几种重要效应,如磁性圆二色性、磁光克尔效应和反常霍尔效应。随后,我们预测了二维磁性材料在自旋电子器件中的潜在应用。最后,我们还讨论了二维磁体中的吸引磁子、天幕和其他自旋纹理的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Progress in Two-Dimensional Magnetic Materials.

The giant magnetoresistance effect in two-dimensional (2D) magnetic materials has sparked substantial interest in various fields; including sensing; data storage; electronics; and spintronics. Their unique 2D layered structures allow for the manifestation of distinctive physical properties and precise performance regulation under different conditions. In this review, we present an overview of this rapidly developing research area. Firstly, these 2D magnetic materials are catalogued according to magnetic coupling types. Then, several vital effects in 2D magnets are highlighted together with theoretical investigation, such as magnetic circular dichroism, magneto-optical Kerr effect, and anomalous Hall effect. After that, we forecast the potential applications of 2D magnetic materials for spintronic devices. Lastly, research advances in the attracting magnons, skyrmions and other spin textures in 2D magnets are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信