{"title":"通过共挤压法优化 Ag2Te 薄膜的热电性能。","authors":"Hanwen Xu, Zhongzhao Zha, Fu Li, Guangxing Liang, Jingting Luo, Zhuanghao Zheng, Yue-Xing Chen","doi":"10.3390/nano14211762","DOIUrl":null,"url":null,"abstract":"<p><p>Providing self-powered energy for wearable electronic devices is currently an important research direction in the field of thermoelectric (TE) thin films. In this study, a simple dual-source magnetron sputtering method was used to prepare Ag<sub>2</sub>Te thin films, which exhibit good TE properties at room temperature, and the growth temperature and subsequent annealing process were optimized to obtain high-quality films. The experimental results show that films grown at a substrate temperature of 280 °C exhibit a high power factor (PF) of ~3.95 μW/cm·K<sup>2</sup> at room temperature, which is further improved to 4.79 μW/cm·K<sup>2</sup> after optimal annealing treatment, and a highest PF of ~7.85 μW/cm·K<sup>2</sup> was observed at 200 °C. Appropriate annealing temperature effectively increases the carrier mobility of the Ag<sub>2</sub>Te films and adjusts the Ag/Te ratio to make the composition closer to the stoichiometric ratio, thus promoting the enhancement of electrical transport properties. A TE device with five legs was assembled using as-fabricated Ag<sub>2</sub>Te thin films. With a temperature difference of 40 K, the device was able to generate an output voltage of approximately 14.43 mV and a corresponding power of about 50.52 nW. This work not only prepared a high-performance Ag<sub>2</sub>Te film but also demonstrated its application prospects in the field of self-powered electronic devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547814/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of Thermoelectric Performance of Ag<sub>2</sub>Te Films via a Co-Sputtering Method.\",\"authors\":\"Hanwen Xu, Zhongzhao Zha, Fu Li, Guangxing Liang, Jingting Luo, Zhuanghao Zheng, Yue-Xing Chen\",\"doi\":\"10.3390/nano14211762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Providing self-powered energy for wearable electronic devices is currently an important research direction in the field of thermoelectric (TE) thin films. In this study, a simple dual-source magnetron sputtering method was used to prepare Ag<sub>2</sub>Te thin films, which exhibit good TE properties at room temperature, and the growth temperature and subsequent annealing process were optimized to obtain high-quality films. The experimental results show that films grown at a substrate temperature of 280 °C exhibit a high power factor (PF) of ~3.95 μW/cm·K<sup>2</sup> at room temperature, which is further improved to 4.79 μW/cm·K<sup>2</sup> after optimal annealing treatment, and a highest PF of ~7.85 μW/cm·K<sup>2</sup> was observed at 200 °C. Appropriate annealing temperature effectively increases the carrier mobility of the Ag<sub>2</sub>Te films and adjusts the Ag/Te ratio to make the composition closer to the stoichiometric ratio, thus promoting the enhancement of electrical transport properties. A TE device with five legs was assembled using as-fabricated Ag<sub>2</sub>Te thin films. With a temperature difference of 40 K, the device was able to generate an output voltage of approximately 14.43 mV and a corresponding power of about 50.52 nW. This work not only prepared a high-performance Ag<sub>2</sub>Te film but also demonstrated its application prospects in the field of self-powered electronic devices.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547814/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211762\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211762","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of Thermoelectric Performance of Ag2Te Films via a Co-Sputtering Method.
Providing self-powered energy for wearable electronic devices is currently an important research direction in the field of thermoelectric (TE) thin films. In this study, a simple dual-source magnetron sputtering method was used to prepare Ag2Te thin films, which exhibit good TE properties at room temperature, and the growth temperature and subsequent annealing process were optimized to obtain high-quality films. The experimental results show that films grown at a substrate temperature of 280 °C exhibit a high power factor (PF) of ~3.95 μW/cm·K2 at room temperature, which is further improved to 4.79 μW/cm·K2 after optimal annealing treatment, and a highest PF of ~7.85 μW/cm·K2 was observed at 200 °C. Appropriate annealing temperature effectively increases the carrier mobility of the Ag2Te films and adjusts the Ag/Te ratio to make the composition closer to the stoichiometric ratio, thus promoting the enhancement of electrical transport properties. A TE device with five legs was assembled using as-fabricated Ag2Te thin films. With a temperature difference of 40 K, the device was able to generate an output voltage of approximately 14.43 mV and a corresponding power of about 50.52 nW. This work not only prepared a high-performance Ag2Te film but also demonstrated its application prospects in the field of self-powered electronic devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.