{"title":"通过硼石墨二炔层与镍的功能化获得的新型二维材料。","authors":"Estefanía Germán, María J López, Julio A Alonso","doi":"10.3390/nano14211706","DOIUrl":null,"url":null,"abstract":"<p><p>The decoration of hexagonal boron graphdiyne (BGDY) layers with Ni atoms has been investigated by density functional calculations. For one, two, and three Ni atoms per hexagon, the BGDY structure is approximately maintained. Decoration with six Ni atoms per hexagon leads to the formation of a novel, very stable two-dimensional material in which the hexagonal structure of BGDY is substantially distorted. The Ni-doped materials have a semiconductor character, and the electronic band gap width can be tailored by varying the amount of adsorbed Ni. BGDY-2Ni, BGDY-3Ni, and BGDY-6Ni have electronic band gaps promising for infrared detectors. This work shows that computer simulation helps to discover new materials by the functionalization of layered carbon materials with metal atoms.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547700/pdf/","citationCount":"0","resultStr":"{\"title\":\"New Two-Dimensional Materials Obtained by Functionalization of Boron Graphdiyne Layers with Nickel.\",\"authors\":\"Estefanía Germán, María J López, Julio A Alonso\",\"doi\":\"10.3390/nano14211706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The decoration of hexagonal boron graphdiyne (BGDY) layers with Ni atoms has been investigated by density functional calculations. For one, two, and three Ni atoms per hexagon, the BGDY structure is approximately maintained. Decoration with six Ni atoms per hexagon leads to the formation of a novel, very stable two-dimensional material in which the hexagonal structure of BGDY is substantially distorted. The Ni-doped materials have a semiconductor character, and the electronic band gap width can be tailored by varying the amount of adsorbed Ni. BGDY-2Ni, BGDY-3Ni, and BGDY-6Ni have electronic band gaps promising for infrared detectors. This work shows that computer simulation helps to discover new materials by the functionalization of layered carbon materials with metal atoms.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547700/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211706\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211706","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
New Two-Dimensional Materials Obtained by Functionalization of Boron Graphdiyne Layers with Nickel.
The decoration of hexagonal boron graphdiyne (BGDY) layers with Ni atoms has been investigated by density functional calculations. For one, two, and three Ni atoms per hexagon, the BGDY structure is approximately maintained. Decoration with six Ni atoms per hexagon leads to the formation of a novel, very stable two-dimensional material in which the hexagonal structure of BGDY is substantially distorted. The Ni-doped materials have a semiconductor character, and the electronic band gap width can be tailored by varying the amount of adsorbed Ni. BGDY-2Ni, BGDY-3Ni, and BGDY-6Ni have electronic band gaps promising for infrared detectors. This work shows that computer simulation helps to discover new materials by the functionalization of layered carbon materials with metal atoms.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.