二维金属氮化物的机械特性:数值模拟研究

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-29 DOI:10.3390/nano14211736
Nataliya A Sakharova, André F G Pereira, Jorge M Antunes
{"title":"二维金属氮化物的机械特性:数值模拟研究","authors":"Nataliya A Sakharova, André F G Pereira, Jorge M Antunes","doi":"10.3390/nano14211736","DOIUrl":null,"url":null,"abstract":"<p><p>It is expected that two-dimensional (2D) metal nitrides (MNs) consisting of the 13th group elements of the periodic table and nitrogen, namely aluminium nitride (AlN), gallium nitride (GaN), indium nitride (InN) and thallium nitride (TlN), have enhanced physical and mechanical properties due to the honeycomb, graphene-like atomic arrangement characteristic of these compounds. The basis for the correct design and improved performance of nanodevices and complex structures based on 2D MNs from the 13th group is an understanding of the mechanical response of their components. In this context, a comparative study to determine the elastic properties of metal nitride nanosheets was carried out making use of the nanoscale continuum modelling (or molecular structural mechanics) method. The differences in the elastic properties (surface shear and Young's moduli and Poisson's ratio) found for the 2D 13th group MNs are attributed to the bond length of the respective hexagonal lattice of their diatomic nanostructure. The outcomes obtained contribute to a benchmark in the evaluation of the mechanical properties of AlN, GaN, InN and TlN monolayers using analytical and numerical approaches.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547914/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties of Two-Dimensional Metal Nitrides: Numerical Simulation Study.\",\"authors\":\"Nataliya A Sakharova, André F G Pereira, Jorge M Antunes\",\"doi\":\"10.3390/nano14211736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is expected that two-dimensional (2D) metal nitrides (MNs) consisting of the 13th group elements of the periodic table and nitrogen, namely aluminium nitride (AlN), gallium nitride (GaN), indium nitride (InN) and thallium nitride (TlN), have enhanced physical and mechanical properties due to the honeycomb, graphene-like atomic arrangement characteristic of these compounds. The basis for the correct design and improved performance of nanodevices and complex structures based on 2D MNs from the 13th group is an understanding of the mechanical response of their components. In this context, a comparative study to determine the elastic properties of metal nitride nanosheets was carried out making use of the nanoscale continuum modelling (or molecular structural mechanics) method. The differences in the elastic properties (surface shear and Young's moduli and Poisson's ratio) found for the 2D 13th group MNs are attributed to the bond length of the respective hexagonal lattice of their diatomic nanostructure. The outcomes obtained contribute to a benchmark in the evaluation of the mechanical properties of AlN, GaN, InN and TlN monolayers using analytical and numerical approaches.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211736\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211736","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由元素周期表第 13 族元素和氮组成的二维(2D)金属氮化物(MNs),即氮化铝 (AlN)、氮化镓 (GaN)、氮化铟 (InN) 和氮化铊 (TlN),由于这些化合物特有的蜂窝状、类似石墨烯的原子排列,有望增强物理和机械性能。正确设计和改进基于第 13 组二维 MN 的纳米器件和复杂结构的性能的基础是了解其成分的机械响应。在此背景下,利用纳米级连续建模(或分子结构力学)方法进行了一项比较研究,以确定金属氮化物纳米片的弹性特性。研究发现,二维第 13 族氮化金属的弹性特性(表面剪切模量、杨氏模量和泊松比)的差异归因于二原子纳米结构中各自六方晶格的键长。所获得的结果为使用分析和数值方法评估氮化铝、氮化镓、氮化铟和氮化钛单层的机械特性提供了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical Properties of Two-Dimensional Metal Nitrides: Numerical Simulation Study.

It is expected that two-dimensional (2D) metal nitrides (MNs) consisting of the 13th group elements of the periodic table and nitrogen, namely aluminium nitride (AlN), gallium nitride (GaN), indium nitride (InN) and thallium nitride (TlN), have enhanced physical and mechanical properties due to the honeycomb, graphene-like atomic arrangement characteristic of these compounds. The basis for the correct design and improved performance of nanodevices and complex structures based on 2D MNs from the 13th group is an understanding of the mechanical response of their components. In this context, a comparative study to determine the elastic properties of metal nitride nanosheets was carried out making use of the nanoscale continuum modelling (or molecular structural mechanics) method. The differences in the elastic properties (surface shear and Young's moduli and Poisson's ratio) found for the 2D 13th group MNs are attributed to the bond length of the respective hexagonal lattice of their diatomic nanostructure. The outcomes obtained contribute to a benchmark in the evaluation of the mechanical properties of AlN, GaN, InN and TlN monolayers using analytical and numerical approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信