热处理对外延 Co2FeGe 薄膜结构和磁性能的影响

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-30 DOI:10.3390/nano14211745
Andrii Vovk, Dariia Popadiuk, Bogdan Postolnyi, Sergey Bunyaev, Pavel Štrichovanec, José Ángel Pardo, Pedro Antonio Algarabel, Olga Salyuk, Vladislav Korenivski, Gleb N Kakazei, Vladimir O Golub, João Pedro Araujo
{"title":"热处理对外延 Co2FeGe 薄膜结构和磁性能的影响","authors":"Andrii Vovk, Dariia Popadiuk, Bogdan Postolnyi, Sergey Bunyaev, Pavel Štrichovanec, José Ángel Pardo, Pedro Antonio Algarabel, Olga Salyuk, Vladislav Korenivski, Gleb N Kakazei, Vladimir O Golub, João Pedro Araujo","doi":"10.3390/nano14211745","DOIUrl":null,"url":null,"abstract":"<p><p>The structure and magnetic properties of epitaxial Heusler alloy films (Co<sub>2</sub>FeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (T<sub>S</sub>), and those deposited at room temperature were later annealed at various temperatures (T<sub>a</sub>). X-ray diffraction confirmed (001) [110] Co<sub>2</sub>FeGe || (001) [100] MgO epitaxial growth. A slight tetragonal distortion of the film cubic structure was found in all samples due to the tensile stress induced by the mismatch of the lattice parameters between Co<sub>2</sub>FeGe and the substrate. Improved quality of epitaxy and the formation of an atomically ordered L2<sub>1</sub> structure were observed for films processed at elevated temperatures. The values of magnetization increased with increasing T<sub>S</sub> and T<sub>a</sub>. Ferromagnetic resonance (FMR) studies revealed 45° in-plane rotation of the easy anisotropy axis direction depending on the degree of the tetragonal distortion. The film annealed at T<sub>a</sub> = 573 K possesses the minimal FMR linewidth and magnetic damping, while both these parameters increase for another T<sub>S</sub> and T<sub>a</sub>. Overall, this study underscores the crucial role of thermal treatment in optimizing the magnetic properties of Co<sub>2</sub>FeGe films for potential spintronic and magnonic applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Thermal Processing on the Structural and Magnetic Properties of Epitaxial Co<sub>2</sub>FeGe Films.\",\"authors\":\"Andrii Vovk, Dariia Popadiuk, Bogdan Postolnyi, Sergey Bunyaev, Pavel Štrichovanec, José Ángel Pardo, Pedro Antonio Algarabel, Olga Salyuk, Vladislav Korenivski, Gleb N Kakazei, Vladimir O Golub, João Pedro Araujo\",\"doi\":\"10.3390/nano14211745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The structure and magnetic properties of epitaxial Heusler alloy films (Co<sub>2</sub>FeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (T<sub>S</sub>), and those deposited at room temperature were later annealed at various temperatures (T<sub>a</sub>). X-ray diffraction confirmed (001) [110] Co<sub>2</sub>FeGe || (001) [100] MgO epitaxial growth. A slight tetragonal distortion of the film cubic structure was found in all samples due to the tensile stress induced by the mismatch of the lattice parameters between Co<sub>2</sub>FeGe and the substrate. Improved quality of epitaxy and the formation of an atomically ordered L2<sub>1</sub> structure were observed for films processed at elevated temperatures. The values of magnetization increased with increasing T<sub>S</sub> and T<sub>a</sub>. Ferromagnetic resonance (FMR) studies revealed 45° in-plane rotation of the easy anisotropy axis direction depending on the degree of the tetragonal distortion. The film annealed at T<sub>a</sub> = 573 K possesses the minimal FMR linewidth and magnetic damping, while both these parameters increase for another T<sub>S</sub> and T<sub>a</sub>. Overall, this study underscores the crucial role of thermal treatment in optimizing the magnetic properties of Co<sub>2</sub>FeGe films for potential spintronic and magnonic applications.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211745\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211745","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了沉积在氧化镁(100)基底上的外延 Heusler 合金薄膜(Co2FeGe)的结构和磁性能。在不同的基底温度(TS)下通过磁控共溅射制备了厚度为 60 nm 的薄膜,在室温下沉积的薄膜随后在不同的温度(Ta)下退火。X 射线衍射证实了 (001) [110] Co2FeGe || (001) [100] MgO 的外延生长。由于 Co2FeGe 和基底之间的晶格参数不匹配所引起的拉伸应力,所有样品的薄膜立方结构都出现了轻微的四方畸变。在高温下加工的薄膜外延质量提高,并形成了原子有序的 L21 结构。磁化值随着 TS 和 Ta 的增加而增加。铁磁共振 (FMR) 研究表明,易各向异性轴方向的 45° 平面内旋转取决于四方畸变的程度。在 Ta = 573 K 下退火的薄膜具有最小的 FMR 线宽和磁阻尼,而随着 TS 和 Ta 的增加,这两个参数都会增加。总之,这项研究强调了热处理在优化 Co2FeGe 薄膜磁性能方面的关键作用,可用于潜在的自旋电子和磁性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Thermal Processing on the Structural and Magnetic Properties of Epitaxial Co2FeGe Films.

The structure and magnetic properties of epitaxial Heusler alloy films (Co2FeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (TS), and those deposited at room temperature were later annealed at various temperatures (Ta). X-ray diffraction confirmed (001) [110] Co2FeGe || (001) [100] MgO epitaxial growth. A slight tetragonal distortion of the film cubic structure was found in all samples due to the tensile stress induced by the mismatch of the lattice parameters between Co2FeGe and the substrate. Improved quality of epitaxy and the formation of an atomically ordered L21 structure were observed for films processed at elevated temperatures. The values of magnetization increased with increasing TS and Ta. Ferromagnetic resonance (FMR) studies revealed 45° in-plane rotation of the easy anisotropy axis direction depending on the degree of the tetragonal distortion. The film annealed at Ta = 573 K possesses the minimal FMR linewidth and magnetic damping, while both these parameters increase for another TS and Ta. Overall, this study underscores the crucial role of thermal treatment in optimizing the magnetic properties of Co2FeGe films for potential spintronic and magnonic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信