Zhanna V Kozyreva, Polina A Demina, Olga I Gusliakova, Gleb B Sukhorukov, Olga A Sindeeva
{"title":"细胞间自由和胶囊共轭氰基染料的交换。","authors":"Zhanna V Kozyreva, Polina A Demina, Olga I Gusliakova, Gleb B Sukhorukov, Olga A Sindeeva","doi":"10.1039/d4tb01874e","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent dyes (especially photoconvertible cyanine dyes) are traditionally used as labels to study single-cell or cell-group interactions and migration. Nevertheless, their application has some disadvantages, such as cytotoxicity and dye transfer between cells during co-cultivation. The latter can lead to serious distortions in research results. At the same time, the lack of a worthy alternative explains the reasons for hushing up this serious problem. Here, we propose low-cytotoxicity encapsulated forms of cyanine 3.5 and cyanine 5.5, enabling intracellular uptake and facilitating single-cell labeling and tracking as an efficient alternative to existing staining. Only 16.9% of myoblasts (C2C12) exchanged encapsulated dyes compared with 99.7% of cells that exchanged the free form of the same dyes. Simultaneous application of several encapsulated cyanine dyes, combined with the possibility of photoconversion, provides multi-color coding of individual cells. Encapsulation of cyanine dyes allows reliable labeling and reduces the transfer of the dyes between cells.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exchange of free and capsule conjugated cyanine dyes between cells.\",\"authors\":\"Zhanna V Kozyreva, Polina A Demina, Olga I Gusliakova, Gleb B Sukhorukov, Olga A Sindeeva\",\"doi\":\"10.1039/d4tb01874e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescent dyes (especially photoconvertible cyanine dyes) are traditionally used as labels to study single-cell or cell-group interactions and migration. Nevertheless, their application has some disadvantages, such as cytotoxicity and dye transfer between cells during co-cultivation. The latter can lead to serious distortions in research results. At the same time, the lack of a worthy alternative explains the reasons for hushing up this serious problem. Here, we propose low-cytotoxicity encapsulated forms of cyanine 3.5 and cyanine 5.5, enabling intracellular uptake and facilitating single-cell labeling and tracking as an efficient alternative to existing staining. Only 16.9% of myoblasts (C2C12) exchanged encapsulated dyes compared with 99.7% of cells that exchanged the free form of the same dyes. Simultaneous application of several encapsulated cyanine dyes, combined with the possibility of photoconversion, provides multi-color coding of individual cells. Encapsulation of cyanine dyes allows reliable labeling and reduces the transfer of the dyes between cells.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4tb01874e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01874e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exchange of free and capsule conjugated cyanine dyes between cells.
Fluorescent dyes (especially photoconvertible cyanine dyes) are traditionally used as labels to study single-cell or cell-group interactions and migration. Nevertheless, their application has some disadvantages, such as cytotoxicity and dye transfer between cells during co-cultivation. The latter can lead to serious distortions in research results. At the same time, the lack of a worthy alternative explains the reasons for hushing up this serious problem. Here, we propose low-cytotoxicity encapsulated forms of cyanine 3.5 and cyanine 5.5, enabling intracellular uptake and facilitating single-cell labeling and tracking as an efficient alternative to existing staining. Only 16.9% of myoblasts (C2C12) exchanged encapsulated dyes compared with 99.7% of cells that exchanged the free form of the same dyes. Simultaneous application of several encapsulated cyanine dyes, combined with the possibility of photoconversion, provides multi-color coding of individual cells. Encapsulation of cyanine dyes allows reliable labeling and reduces the transfer of the dyes between cells.