CD1530是一种选择性RARγ激动剂,可通过调节小鼠模型的愈合环境(包括减少软骨化)促进跟腱愈合。

IF 2.1 3区 医学 Q2 ORTHOPEDICS
Dilimulati Yimiti, Kenta Uchibe, Minoru Toriyama, Yuta Hayashi, Yasunari Ikuta, Tomoyuki Nakasa, Haruhiko Akiyama, Hitomi Watanabe, Gen Kondoh, Aki Takimoto, Chisa Shukunami, Nobuo Adachi, Shigeru Miyaki
{"title":"CD1530是一种选择性RARγ激动剂,可通过调节小鼠模型的愈合环境(包括减少软骨化)促进跟腱愈合。","authors":"Dilimulati Yimiti, Kenta Uchibe, Minoru Toriyama, Yuta Hayashi, Yasunari Ikuta, Tomoyuki Nakasa, Haruhiko Akiyama, Hitomi Watanabe, Gen Kondoh, Aki Takimoto, Chisa Shukunami, Nobuo Adachi, Shigeru Miyaki","doi":"10.1002/jor.26006","DOIUrl":null,"url":null,"abstract":"<p><p>Heterotopic ossification (HO) in Achilles tendon often arises due to endochondral ossification during the healing process following trauma. Retinoic acid receptor γ (RARγ) plays a critical role in this phenomenon. This study aims to elucidate the therapeutic effects of CD1530, an RARγ selective agonist, along with the contributing cells, in Achilles tendon healing, utilizing a cell lineage tracing system. Local injection of CD1530 facilitated histological tendon healing by inhibiting chondrification in a mouse Achilles rupture model. Resident Scleraxis (Scx)<sup>+</sup> cells in Achilles tendon were not found to be actively involved in HO or tendon healing following injury. Instead, these processes were primarily driven by tendon stem/progenitor cells (TSPC)-like cells. Furthermore, an in vitro assay revealed that CD1530 attenuated inflammation in injured Achilles tendon-derived tendon fibroblasts (iATF) and inhibited the chondrogenesis of iATF. This dual effect suggests the potential of CD1530 in effectively modulating the healing environment during tendon healing. Together, the present study demonstrated that the local administration of CD1530 accelerated tendon healing by modulating the healing environment, including reducing chondrification via targeting TSPC-like cells in a mouse Achilles tendon rupture model. These results suggest that CD1530 may have the potential to be a novel tendon therapy that offers benefits via the inhibition of chondrogenesis.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CD1530, selective RARγ agonist, facilitates Achilles tendon healing by modulating the healing environment including less chondrification in a mouse model.\",\"authors\":\"Dilimulati Yimiti, Kenta Uchibe, Minoru Toriyama, Yuta Hayashi, Yasunari Ikuta, Tomoyuki Nakasa, Haruhiko Akiyama, Hitomi Watanabe, Gen Kondoh, Aki Takimoto, Chisa Shukunami, Nobuo Adachi, Shigeru Miyaki\",\"doi\":\"10.1002/jor.26006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heterotopic ossification (HO) in Achilles tendon often arises due to endochondral ossification during the healing process following trauma. Retinoic acid receptor γ (RARγ) plays a critical role in this phenomenon. This study aims to elucidate the therapeutic effects of CD1530, an RARγ selective agonist, along with the contributing cells, in Achilles tendon healing, utilizing a cell lineage tracing system. Local injection of CD1530 facilitated histological tendon healing by inhibiting chondrification in a mouse Achilles rupture model. Resident Scleraxis (Scx)<sup>+</sup> cells in Achilles tendon were not found to be actively involved in HO or tendon healing following injury. Instead, these processes were primarily driven by tendon stem/progenitor cells (TSPC)-like cells. Furthermore, an in vitro assay revealed that CD1530 attenuated inflammation in injured Achilles tendon-derived tendon fibroblasts (iATF) and inhibited the chondrogenesis of iATF. This dual effect suggests the potential of CD1530 in effectively modulating the healing environment during tendon healing. Together, the present study demonstrated that the local administration of CD1530 accelerated tendon healing by modulating the healing environment, including reducing chondrification via targeting TSPC-like cells in a mouse Achilles tendon rupture model. These results suggest that CD1530 may have the potential to be a novel tendon therapy that offers benefits via the inhibition of chondrogenesis.</p>\",\"PeriodicalId\":16650,\"journal\":{\"name\":\"Journal of Orthopaedic Research®\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Research®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jor.26006\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.26006","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

跟腱异位骨化(HO)通常是由于创伤后愈合过程中的软骨内骨化引起的。视黄酸受体γ(RARγ)在这一现象中起着关键作用。本研究旨在利用细胞系追踪系统,阐明 CD1530(一种 RARγ 选择性激动剂)和相关细胞对跟腱愈合的治疗作用。在小鼠跟腱断裂模型中,局部注射 CD1530 可抑制软骨化,从而促进组织学肌腱愈合。研究发现,跟腱中的常住硬轴(Scx)+细胞并没有积极参与损伤后的HO或肌腱愈合。相反,这些过程主要由肌腱干/祖细胞(TSPC)样细胞驱动。此外,体外试验显示,CD1530可减轻损伤跟腱衍生肌腱成纤维细胞(iATF)的炎症反应,并抑制iATF的软骨形成。这种双重效应表明,CD1530 有可能在肌腱愈合过程中有效调节愈合环境。综上所述,本研究表明,在小鼠跟腱断裂模型中,局部给药 CD1530 可通过调节愈合环境加速肌腱愈合,包括通过靶向 TSPC 类细胞减少软骨化。这些结果表明,CD1530有可能成为一种新型肌腱疗法,通过抑制软骨生成而带来益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CD1530, selective RARγ agonist, facilitates Achilles tendon healing by modulating the healing environment including less chondrification in a mouse model.

Heterotopic ossification (HO) in Achilles tendon often arises due to endochondral ossification during the healing process following trauma. Retinoic acid receptor γ (RARγ) plays a critical role in this phenomenon. This study aims to elucidate the therapeutic effects of CD1530, an RARγ selective agonist, along with the contributing cells, in Achilles tendon healing, utilizing a cell lineage tracing system. Local injection of CD1530 facilitated histological tendon healing by inhibiting chondrification in a mouse Achilles rupture model. Resident Scleraxis (Scx)+ cells in Achilles tendon were not found to be actively involved in HO or tendon healing following injury. Instead, these processes were primarily driven by tendon stem/progenitor cells (TSPC)-like cells. Furthermore, an in vitro assay revealed that CD1530 attenuated inflammation in injured Achilles tendon-derived tendon fibroblasts (iATF) and inhibited the chondrogenesis of iATF. This dual effect suggests the potential of CD1530 in effectively modulating the healing environment during tendon healing. Together, the present study demonstrated that the local administration of CD1530 accelerated tendon healing by modulating the healing environment, including reducing chondrification via targeting TSPC-like cells in a mouse Achilles tendon rupture model. These results suggest that CD1530 may have the potential to be a novel tendon therapy that offers benefits via the inhibition of chondrogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Orthopaedic Research®
Journal of Orthopaedic Research® 医学-整形外科
CiteScore
6.10
自引率
3.60%
发文量
261
审稿时长
3-6 weeks
期刊介绍: The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信