紫外线/H2O2 和紫外线/H2O2/Fe2+ 过程对孔雀石绿的降解:动力学和机理。

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Frontiers in Chemistry Pub Date : 2024-10-24 eCollection Date: 2024-01-01 DOI:10.3389/fchem.2024.1467438
Sumaira Wilayat, Perveen Fazil, Javed Ali Khan, Amir Zada, Muhammad Ishaq Ali Shah, Abdulaziz Al-Anazi, Noor S Shah, Changseok Han, Muhammad Ateeq
{"title":"紫外线/H2O2 和紫外线/H2O2/Fe2+ 过程对孔雀石绿的降解:动力学和机理。","authors":"Sumaira Wilayat, Perveen Fazil, Javed Ali Khan, Amir Zada, Muhammad Ishaq Ali Shah, Abdulaziz Al-Anazi, Noor S Shah, Changseok Han, Muhammad Ateeq","doi":"10.3389/fchem.2024.1467438","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigated the photochemical degradation of malachite green (MG), a cationic triphenylmethane dye used as a coloring agent, fungicide, and antiseptic. UV photolysis was ineffective in the removal of MG as only 12.35% degradation of MG (10 mg/L) was achieved after 60 min of irradiation. In contrast, 100.00% degradation of MG (10 mg/L) was observed after 60 min of irradiation in the presence of 10 mM H<sub>2</sub>O<sub>2</sub> by UV/H<sub>2</sub>O<sub>2</sub> at pH 6.0. Similarly, complete removal (100.00%) of MG was observed at 30 min of the reaction time by UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> employing [MG]<sub>0</sub> = 10 mg/L, [H<sub>2</sub>O<sub>2</sub>]<sub>0</sub> = 10 mM, [Fe<sup>2+</sup>]<sub>0</sub> = 2.5 mg/L, and [pH]<sub>0</sub> = 3.0. For the UV/H<sub>2</sub>O<sub>2</sub> process, the degradation efficiency was higher at pH 6.0 than at pH 3.0 as the <i>k</i> <sub>obs</sub> values were 0.0873 and 0.0690 min<sup>-1</sup>, respectively. However, UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> showed higher reactivity at pH 3.0 than at pH 6.0. Chloride and nitrate ions slightly inhibited the removal efficiency of MG by both UV/H<sub>2</sub>O<sub>2</sub> and UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> processes. Moreover, three degradation products (DPs) of MG, (i) 4-dimethylamino-benzophenone (DABP), (ii) 4-amino-benzophenone (ABP), and (iii) 4-dimethylamino-phenol (DAP), were identified by GC-MS during the UV/H<sub>2</sub>O<sub>2</sub> treatment. These DPs were found to demonstrate higher aquatic toxicity than the parent MG, suggesting that researchers should focus on the removal of target pollutants as well as their DPs. Nevertheless, the results of this study indicate that both UV/H<sub>2</sub>O<sub>2</sub> and UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> processes could be implemented to alleviate the harmful environmental impacts of dye and textile industries.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1467438"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Degradation of malachite green by UV/H<sub>2</sub>O<sub>2</sub> and UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> processes: kinetics and mechanism.\",\"authors\":\"Sumaira Wilayat, Perveen Fazil, Javed Ali Khan, Amir Zada, Muhammad Ishaq Ali Shah, Abdulaziz Al-Anazi, Noor S Shah, Changseok Han, Muhammad Ateeq\",\"doi\":\"10.3389/fchem.2024.1467438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work investigated the photochemical degradation of malachite green (MG), a cationic triphenylmethane dye used as a coloring agent, fungicide, and antiseptic. UV photolysis was ineffective in the removal of MG as only 12.35% degradation of MG (10 mg/L) was achieved after 60 min of irradiation. In contrast, 100.00% degradation of MG (10 mg/L) was observed after 60 min of irradiation in the presence of 10 mM H<sub>2</sub>O<sub>2</sub> by UV/H<sub>2</sub>O<sub>2</sub> at pH 6.0. Similarly, complete removal (100.00%) of MG was observed at 30 min of the reaction time by UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> employing [MG]<sub>0</sub> = 10 mg/L, [H<sub>2</sub>O<sub>2</sub>]<sub>0</sub> = 10 mM, [Fe<sup>2+</sup>]<sub>0</sub> = 2.5 mg/L, and [pH]<sub>0</sub> = 3.0. For the UV/H<sub>2</sub>O<sub>2</sub> process, the degradation efficiency was higher at pH 6.0 than at pH 3.0 as the <i>k</i> <sub>obs</sub> values were 0.0873 and 0.0690 min<sup>-1</sup>, respectively. However, UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> showed higher reactivity at pH 3.0 than at pH 6.0. Chloride and nitrate ions slightly inhibited the removal efficiency of MG by both UV/H<sub>2</sub>O<sub>2</sub> and UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> processes. Moreover, three degradation products (DPs) of MG, (i) 4-dimethylamino-benzophenone (DABP), (ii) 4-amino-benzophenone (ABP), and (iii) 4-dimethylamino-phenol (DAP), were identified by GC-MS during the UV/H<sub>2</sub>O<sub>2</sub> treatment. These DPs were found to demonstrate higher aquatic toxicity than the parent MG, suggesting that researchers should focus on the removal of target pollutants as well as their DPs. Nevertheless, the results of this study indicate that both UV/H<sub>2</sub>O<sub>2</sub> and UV/H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup> processes could be implemented to alleviate the harmful environmental impacts of dye and textile industries.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\"12 \",\"pages\":\"1467438\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2024.1467438\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1467438","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

孔雀石绿(MG)是一种用作着色剂、杀真菌剂和防腐剂的阳离子三苯甲烷染料,本研究对孔雀石绿的光化学降解进行了研究。紫外线光解在去除孔雀石绿方面效果不佳,因为在 60 分钟的照射后,孔雀石绿(10 毫克/升)的降解率仅为 12.35%。相反,在 pH 值为 6.0 的条件下,在 10 mM H2O2 的存在下,紫外线/H2O2 照射 60 分钟后,MG(10 mg/L)的降解率为 100.00%。同样,在 UV/H2O2/Fe2+ 反应时间为 30 分钟([MG]0 = 10 mg/L,[H2O2]0 = 10 mM,[Fe2+]0 = 2.5 mg/L,[pH]0 = 3.0)时,观察到 MG 被完全去除(100.00%)。在紫外线/H2O2 过程中,pH 值为 6.0 时的降解效率高于 pH 值为 3.0 时的降解效率,其 k obs 值分别为 0.0873 和 0.0690 min-1。然而,紫外线/H2O2/Fe2+ 在 pH 值为 3.0 时的反应活性高于 pH 值为 6.0 时的反应活性。氯离子和硝酸根离子略微抑制了 UV/H2O2 和 UV/H2O2/Fe2+ 过程对 MG 的去除效率。此外,在 UV/H2O2 处理过程中,通过气相色谱-质谱(GC-MS)鉴定出了 MG 的三种降解产物(DPs):(i) 4-二甲氨基二苯甲酮(DABP)、(ii) 4-氨基二苯甲酮(ABP)和 (iii) 4-二甲氨基苯酚(DAP)。与母体 MG 相比,这些 DPs 具有更高的水生毒性,这表明研究人员应关注目标污染物及其 DPs 的去除。尽管如此,本研究的结果表明,UV/H2O2 和 UV/H2O2/Fe2+ 工艺均可用于减轻染料和纺织工业对环境的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degradation of malachite green by UV/H2O2 and UV/H2O2/Fe2+ processes: kinetics and mechanism.

This work investigated the photochemical degradation of malachite green (MG), a cationic triphenylmethane dye used as a coloring agent, fungicide, and antiseptic. UV photolysis was ineffective in the removal of MG as only 12.35% degradation of MG (10 mg/L) was achieved after 60 min of irradiation. In contrast, 100.00% degradation of MG (10 mg/L) was observed after 60 min of irradiation in the presence of 10 mM H2O2 by UV/H2O2 at pH 6.0. Similarly, complete removal (100.00%) of MG was observed at 30 min of the reaction time by UV/H2O2/Fe2+ employing [MG]0 = 10 mg/L, [H2O2]0 = 10 mM, [Fe2+]0 = 2.5 mg/L, and [pH]0 = 3.0. For the UV/H2O2 process, the degradation efficiency was higher at pH 6.0 than at pH 3.0 as the k obs values were 0.0873 and 0.0690 min-1, respectively. However, UV/H2O2/Fe2+ showed higher reactivity at pH 3.0 than at pH 6.0. Chloride and nitrate ions slightly inhibited the removal efficiency of MG by both UV/H2O2 and UV/H2O2/Fe2+ processes. Moreover, three degradation products (DPs) of MG, (i) 4-dimethylamino-benzophenone (DABP), (ii) 4-amino-benzophenone (ABP), and (iii) 4-dimethylamino-phenol (DAP), were identified by GC-MS during the UV/H2O2 treatment. These DPs were found to demonstrate higher aquatic toxicity than the parent MG, suggesting that researchers should focus on the removal of target pollutants as well as their DPs. Nevertheless, the results of this study indicate that both UV/H2O2 and UV/H2O2/Fe2+ processes could be implemented to alleviate the harmful environmental impacts of dye and textile industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信