两种原始温带泥炭地中需氧和厌氧甲烷氧化的调节因子。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Justus Amuche Nweze, Vojtěch Tláskal, Magdalena Wutkowska, Travis B Meador, Tomáš Picek, Zuzana Urbanová, Anne Daebeler
{"title":"两种原始温带泥炭地中需氧和厌氧甲烷氧化的调节因子。","authors":"Justus Amuche Nweze, Vojtěch Tláskal, Magdalena Wutkowska, Travis B Meador, Tomáš Picek, Zuzana Urbanová, Anne Daebeler","doi":"10.1093/femsec/fiae153","DOIUrl":null,"url":null,"abstract":"<p><p>Despite covering <5% of Earth's terrestrial area, peatlands are crucial for global carbon storage and are hot spots of methane cycling. This study examined the dynamics of aerobic and anaerobic methane oxidation in two undisturbed peatlands: a fen and a spruce swamp forest. Using microcosm incubations, we investigated the effect of ammonium addition, at a level similar to current N pollution processes, on aerobic methane oxidation. Our findings revealed higher methane consumption rates in fen compared to swamp peat, but no effect of ammonium amendment on methane consumption was found. Members of Methylocystis and Methylocella were the predominant methanotrophs in both peatlands. Furthermore, we explored the role of ferric iron and sulfate as electron acceptors for the anaerobic oxidation of methane (AOM). AOM occurred without the addition of an external electron acceptor in the fen, but not in the swamp peat. AOM was stimulated by sulfate and ferric iron addition in the swamp peat and inhibited by ferric iron in the fen. Our findings suggest that aerobic methane oxidizers are not N-limited in these peatlands and that there is an intrinsic potential for AOM in these environments, partially facilitated by ferric iron and sulfate acting as electron acceptors.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585280/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regulators of aerobic and anaerobic methane oxidation in two pristine temperate peatland types.\",\"authors\":\"Justus Amuche Nweze, Vojtěch Tláskal, Magdalena Wutkowska, Travis B Meador, Tomáš Picek, Zuzana Urbanová, Anne Daebeler\",\"doi\":\"10.1093/femsec/fiae153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite covering <5% of Earth's terrestrial area, peatlands are crucial for global carbon storage and are hot spots of methane cycling. This study examined the dynamics of aerobic and anaerobic methane oxidation in two undisturbed peatlands: a fen and a spruce swamp forest. Using microcosm incubations, we investigated the effect of ammonium addition, at a level similar to current N pollution processes, on aerobic methane oxidation. Our findings revealed higher methane consumption rates in fen compared to swamp peat, but no effect of ammonium amendment on methane consumption was found. Members of Methylocystis and Methylocella were the predominant methanotrophs in both peatlands. Furthermore, we explored the role of ferric iron and sulfate as electron acceptors for the anaerobic oxidation of methane (AOM). AOM occurred without the addition of an external electron acceptor in the fen, but not in the swamp peat. AOM was stimulated by sulfate and ferric iron addition in the swamp peat and inhibited by ferric iron in the fen. Our findings suggest that aerobic methane oxidizers are not N-limited in these peatlands and that there is an intrinsic potential for AOM in these environments, partially facilitated by ferric iron and sulfate acting as electron acceptors.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585280/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae153\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae153","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管泥炭地的面积不到地球陆地面积的 5%,但它对全球碳储存至关重要,而且是甲烷循环的热点地区。本研究考察了沼泽和云杉沼泽林这两种未受干扰泥炭地中需氧和厌氧甲烷氧化的动态。我们使用微生态系统培养法研究了铵添加(与当前氮污染过程类似)对好氧甲烷氧化的影响。我们的研究结果表明,与沼泽泥炭相比,沼泽泥炭的甲烷消耗率更高,但铵盐添加对甲烷消耗没有影响。两种泥炭地中最主要的甲烷营养体是甲基孢囊菌和甲基菌。此外,我们还探讨了铁和硫酸盐作为甲烷厌氧氧化(AOM)电子受体的作用。在沼泽泥炭中,在不添加外部电子受体的情况下也会发生甲烷厌氧氧化(AOM),但在沼泽泥炭中则不会。在沼泽泥炭中,硫酸盐和铁元素的加入会刺激 AOM 的产生,而在沼泽中,铁元素会抑制 AOM 的产生。我们的研究结果表明,在这些泥炭地中,需氧甲烷氧化剂并不受氮的限制,而且在这些环境中存在 AOM 的内在潜力,铁和硫酸盐作为电子受体在一定程度上促进了 AOM 的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulators of aerobic and anaerobic methane oxidation in two pristine temperate peatland types.

Despite covering <5% of Earth's terrestrial area, peatlands are crucial for global carbon storage and are hot spots of methane cycling. This study examined the dynamics of aerobic and anaerobic methane oxidation in two undisturbed peatlands: a fen and a spruce swamp forest. Using microcosm incubations, we investigated the effect of ammonium addition, at a level similar to current N pollution processes, on aerobic methane oxidation. Our findings revealed higher methane consumption rates in fen compared to swamp peat, but no effect of ammonium amendment on methane consumption was found. Members of Methylocystis and Methylocella were the predominant methanotrophs in both peatlands. Furthermore, we explored the role of ferric iron and sulfate as electron acceptors for the anaerobic oxidation of methane (AOM). AOM occurred without the addition of an external electron acceptor in the fen, but not in the swamp peat. AOM was stimulated by sulfate and ferric iron addition in the swamp peat and inhibited by ferric iron in the fen. Our findings suggest that aerobic methane oxidizers are not N-limited in these peatlands and that there is an intrinsic potential for AOM in these environments, partially facilitated by ferric iron and sulfate acting as electron acceptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信