与富营养化的热带水库相比,颗粒附着细菌群落更容易受到季节性环境波动的影响。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Jingyi Xiao, Sijia Hao, Li-Juan Xiao, Yang Yang, Qinglong L Wu, Dan He, Lijun Zhou, Ren Hu, Lijuan Ren
{"title":"与富营养化的热带水库相比,颗粒附着细菌群落更容易受到季节性环境波动的影响。","authors":"Jingyi Xiao, Sijia Hao, Li-Juan Xiao, Yang Yang, Qinglong L Wu, Dan He, Lijun Zhou, Ren Hu, Lijuan Ren","doi":"10.1093/femsec/fiae154","DOIUrl":null,"url":null,"abstract":"<p><p>Particle-attached bacterial (PAB) communities play pivotal roles in water organic matter decomposition, nutrient cycling, and the natural self-purification processes. However, we know little about their responses to seasonal environmental fluctuations, under eutrophication in reservoir ecosystems. In this study, we studied the shifts of PAB communities to seasonal environmental fluctuations in tropical China. Trophic state index (TSI) indicated that the studied reservoirs ranged from mesotrophic to eutrophic state with a gradual increase in TSI from 31 to 58. In eutrophic reservoirs, Cyanobacteria, especially Raphidiopsis raciborskii, significantly increased in its relative abundance from wet to dry season, but Synechococcales and Microcystaceae decreased. In contrast, the relative abundance of Clostridia, Bacilli, Coriobacteriia, Enterobacteriales, and Vibrionales were more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic reservoirs. PAB co-occurrence relationships in mesotrophic reservoirs varied more greatly in response to seasonal environmental fluctuations, compared with eutrophic reservoirs, in terms of topological properties of connectedness, average degree, robustness and vulnerability. Our results further demonstrated that the seasonal stability of PAB co-occurrence relationships was strongly correlative with TSI through mediating key bacterial taxa and community biodiversity. We proposed that eutrophication dramatically reduced the seasonal variation of PAB community compositions and co-occurring relationships in reservoir ecosystems.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle-attached bacterial communities are more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic tropical reservoirs.\",\"authors\":\"Jingyi Xiao, Sijia Hao, Li-Juan Xiao, Yang Yang, Qinglong L Wu, Dan He, Lijun Zhou, Ren Hu, Lijuan Ren\",\"doi\":\"10.1093/femsec/fiae154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Particle-attached bacterial (PAB) communities play pivotal roles in water organic matter decomposition, nutrient cycling, and the natural self-purification processes. However, we know little about their responses to seasonal environmental fluctuations, under eutrophication in reservoir ecosystems. In this study, we studied the shifts of PAB communities to seasonal environmental fluctuations in tropical China. Trophic state index (TSI) indicated that the studied reservoirs ranged from mesotrophic to eutrophic state with a gradual increase in TSI from 31 to 58. In eutrophic reservoirs, Cyanobacteria, especially Raphidiopsis raciborskii, significantly increased in its relative abundance from wet to dry season, but Synechococcales and Microcystaceae decreased. In contrast, the relative abundance of Clostridia, Bacilli, Coriobacteriia, Enterobacteriales, and Vibrionales were more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic reservoirs. PAB co-occurrence relationships in mesotrophic reservoirs varied more greatly in response to seasonal environmental fluctuations, compared with eutrophic reservoirs, in terms of topological properties of connectedness, average degree, robustness and vulnerability. Our results further demonstrated that the seasonal stability of PAB co-occurrence relationships was strongly correlative with TSI through mediating key bacterial taxa and community biodiversity. We proposed that eutrophication dramatically reduced the seasonal variation of PAB community compositions and co-occurring relationships in reservoir ecosystems.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae154\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae154","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

颗粒附着细菌(PAB)群落在水体有机物分解、营养循环和自然自净过程中发挥着举足轻重的作用。然而,我们对它们在水库生态系统富营养化条件下对季节性环境波动的反应知之甚少。在本研究中,我们研究了中国热带地区 PAB 群落对季节性环境波动的响应。营养状态指数(TSI)表明,所研究的水库从中度富营养化到富营养化,TSI从31逐渐升高到58;在富营养化水库中,蓝藻,尤其是Raphidiopsis raciborskii的相对丰度从雨季到旱季显著增加,但Synechococcales和Microcystaceae的相对丰度下降。相比之下,在中营养水库中,梭状芽孢杆菌属、芽孢杆菌属、冠状杆菌属、肠杆菌属和弧菌属的相对丰度比富营养化水库更容易受季节环境波动的影响。与富营养化水库相比,中营养水库的 PAB 共现关系在连通性、平均程度、稳健性和脆弱性等拓扑特性方面对季节性环境波动的响应差异更大。我们的研究结果进一步表明,PAB共现关系的季节稳定性通过介导关键细菌类群和群落生物多样性与TSI密切相关。我们认为,富营养化大大减少了水库生态系统中 PAB 群落组成和共生关系的季节性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle-attached bacterial communities are more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic tropical reservoirs.

Particle-attached bacterial (PAB) communities play pivotal roles in water organic matter decomposition, nutrient cycling, and the natural self-purification processes. However, we know little about their responses to seasonal environmental fluctuations, under eutrophication in reservoir ecosystems. In this study, we studied the shifts of PAB communities to seasonal environmental fluctuations in tropical China. Trophic state index (TSI) indicated that the studied reservoirs ranged from mesotrophic to eutrophic state with a gradual increase in TSI from 31 to 58. In eutrophic reservoirs, Cyanobacteria, especially Raphidiopsis raciborskii, significantly increased in its relative abundance from wet to dry season, but Synechococcales and Microcystaceae decreased. In contrast, the relative abundance of Clostridia, Bacilli, Coriobacteriia, Enterobacteriales, and Vibrionales were more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic reservoirs. PAB co-occurrence relationships in mesotrophic reservoirs varied more greatly in response to seasonal environmental fluctuations, compared with eutrophic reservoirs, in terms of topological properties of connectedness, average degree, robustness and vulnerability. Our results further demonstrated that the seasonal stability of PAB co-occurrence relationships was strongly correlative with TSI through mediating key bacterial taxa and community biodiversity. We proposed that eutrophication dramatically reduced the seasonal variation of PAB community compositions and co-occurring relationships in reservoir ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信