Flávia Silva-Sousa, Bruna Oliveira, Ricardo Franco-Duarte, Carole Camarasa, Maria João Sousa
{"title":"弥合差距:将 Torulaspora delbrueckii 基因型与发酵表型和葡萄酒香气联系起来。","authors":"Flávia Silva-Sousa, Bruna Oliveira, Ricardo Franco-Duarte, Carole Camarasa, Maria João Sousa","doi":"10.1093/femsyr/foae034","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change and consumer preferences are driving innovation in winemaking, with a growing interest in non-Saccharomyces species. Among these, Torulaspora delbrueckii (Td) has gained recognition for its ability to reduce volatile acidity and enhance aromatic complexity in wine. However, knowledge regarding its phenotypic and genomic diversity impacting alcoholic fermentation remains limited. Aiming to elucidate the metabolic differences between Td and Saccharomyces cerevisiae (Sc) and the Td intraspecies diversity, we conducted a comprehensive metabolic characterization of 15 Td strains. This analysis delved beyond standard fermentation parameters (kinetics and major metabolites production) to explore non-conventional aromas and establish genotype-phenotype links. Our findings confirmed that most Td strains produce less acetic acid and more succinate and glycerol than Sc. The overall aromatic profiles of Td strains differed from Sc, exhibiting higher levels of monoterpenes and higher alcohols, while producing less acetate esters, fatty acids, their corresponding ethyl esters, and lactones. Moreover, we identified the absence of genes responsible for specific aroma profiles, such as decreased ethyl esters production, as well as the absence of cell wall genes, which might negatively affect Td performance when compared to Sc. This work highlights the significant diversity within Td and underscores potential links between its genotype and phenotype.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600337/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bridging the gap: linking Torulaspora delbrueckii genotypes to fermentation phenotypes and wine aroma.\",\"authors\":\"Flávia Silva-Sousa, Bruna Oliveira, Ricardo Franco-Duarte, Carole Camarasa, Maria João Sousa\",\"doi\":\"10.1093/femsyr/foae034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change and consumer preferences are driving innovation in winemaking, with a growing interest in non-Saccharomyces species. Among these, Torulaspora delbrueckii (Td) has gained recognition for its ability to reduce volatile acidity and enhance aromatic complexity in wine. However, knowledge regarding its phenotypic and genomic diversity impacting alcoholic fermentation remains limited. Aiming to elucidate the metabolic differences between Td and Saccharomyces cerevisiae (Sc) and the Td intraspecies diversity, we conducted a comprehensive metabolic characterization of 15 Td strains. This analysis delved beyond standard fermentation parameters (kinetics and major metabolites production) to explore non-conventional aromas and establish genotype-phenotype links. Our findings confirmed that most Td strains produce less acetic acid and more succinate and glycerol than Sc. The overall aromatic profiles of Td strains differed from Sc, exhibiting higher levels of monoterpenes and higher alcohols, while producing less acetate esters, fatty acids, their corresponding ethyl esters, and lactones. Moreover, we identified the absence of genes responsible for specific aroma profiles, such as decreased ethyl esters production, as well as the absence of cell wall genes, which might negatively affect Td performance when compared to Sc. This work highlights the significant diversity within Td and underscores potential links between its genotype and phenotype.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600337/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foae034\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae034","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bridging the gap: linking Torulaspora delbrueckii genotypes to fermentation phenotypes and wine aroma.
Climate change and consumer preferences are driving innovation in winemaking, with a growing interest in non-Saccharomyces species. Among these, Torulaspora delbrueckii (Td) has gained recognition for its ability to reduce volatile acidity and enhance aromatic complexity in wine. However, knowledge regarding its phenotypic and genomic diversity impacting alcoholic fermentation remains limited. Aiming to elucidate the metabolic differences between Td and Saccharomyces cerevisiae (Sc) and the Td intraspecies diversity, we conducted a comprehensive metabolic characterization of 15 Td strains. This analysis delved beyond standard fermentation parameters (kinetics and major metabolites production) to explore non-conventional aromas and establish genotype-phenotype links. Our findings confirmed that most Td strains produce less acetic acid and more succinate and glycerol than Sc. The overall aromatic profiles of Td strains differed from Sc, exhibiting higher levels of monoterpenes and higher alcohols, while producing less acetate esters, fatty acids, their corresponding ethyl esters, and lactones. Moreover, we identified the absence of genes responsible for specific aroma profiles, such as decreased ethyl esters production, as well as the absence of cell wall genes, which might negatively affect Td performance when compared to Sc. This work highlights the significant diversity within Td and underscores potential links between its genotype and phenotype.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.