Ruiqi Liang , Ziyin Cui , Sayed Haidar Abbas Raza , Tingxuan Li , Zhe Zhang , Qixing Huang , Huifang Bai , Yan Cheng , Bingmei Du , Jinhong Li , Wenbin Zhu , Xiaochen Ren , Yuan Cao , Ning Liu , Hind Jaber Althagafi , Deema Fallatah , Wuwen Sun , Lei Zhang
{"title":"嗜水气单胞菌噬菌体裂解物对鲫鱼直接毒性挑战嗜水气单胞菌-TPS的保护性免疫反应。","authors":"Ruiqi Liang , Ziyin Cui , Sayed Haidar Abbas Raza , Tingxuan Li , Zhe Zhang , Qixing Huang , Huifang Bai , Yan Cheng , Bingmei Du , Jinhong Li , Wenbin Zhu , Xiaochen Ren , Yuan Cao , Ning Liu , Hind Jaber Althagafi , Deema Fallatah , Wuwen Sun , Lei Zhang","doi":"10.1016/j.fsi.2024.110011","DOIUrl":null,"url":null,"abstract":"<div><div><em>Aeromonas hydrophila</em> was a common opportunistic pathogen that was widely found in various aquatic environment and could cause multiple infections in humans and animals. The haemorrhagic septicemia and bacterial enteritis in fish triggered by this pathogen led to significant losses in the aquaculture industry. In this study, we aimed to develop a phage lysate vaccine by lysing the <em>A. hydrophila</em>-TPS strain using phage PZY-Ah, which was previously isolated and preserved in the laboratory. First, we focused on optimizing phage lysis conditions, including different host bacteria culture time, phage lysis time, and phage to bacterial ratios. The optimal conditions were established as follows: culturing the <em>A. hydrophila</em>-TPS strain for 6 h, adding phage at a ratio of 1:10, and mixing for 4 h, which resulted in maximum lysis of the host bacteria. Subsequently, we assessed the immune responses of groups receiving formaldehyde-inactivated vaccines compared to those receiving various concentrations of the phage lysate vaccine. Both the TPS-phage lysate and formaldehyde-inactivated vaccine groups exhibited increased levels of specific immune enzymes (ACP, AKP, LZM, SOD, CAT) and cytokines (IL-1β, TNF-α and IFN-γ) in serum, as well as enhanced humoral immunity (IgM, C3 and C4) in crucian carp. Furthermore, challenge tests conducted post-immunization demonstrated that the high concentration of the TPS strain-lysate vaccine group (1 × 10<sup>8</sup> CFU/mL) achieved the highest immune protection rate at 88.89 %. Overall, the development of the TPS-phage lysate vaccine significantly enhanced the immunity of crucian carp, providing a higher level of protection and establishing a foundation for the research and development of phage-based aquatic vaccines.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"155 ","pages":"Article 110011"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective immune-response of Aeromonas hydrophila phage lysate in crucian carp against direct virulent challenge with A. hydrophila-TPS\",\"authors\":\"Ruiqi Liang , Ziyin Cui , Sayed Haidar Abbas Raza , Tingxuan Li , Zhe Zhang , Qixing Huang , Huifang Bai , Yan Cheng , Bingmei Du , Jinhong Li , Wenbin Zhu , Xiaochen Ren , Yuan Cao , Ning Liu , Hind Jaber Althagafi , Deema Fallatah , Wuwen Sun , Lei Zhang\",\"doi\":\"10.1016/j.fsi.2024.110011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Aeromonas hydrophila</em> was a common opportunistic pathogen that was widely found in various aquatic environment and could cause multiple infections in humans and animals. The haemorrhagic septicemia and bacterial enteritis in fish triggered by this pathogen led to significant losses in the aquaculture industry. In this study, we aimed to develop a phage lysate vaccine by lysing the <em>A. hydrophila</em>-TPS strain using phage PZY-Ah, which was previously isolated and preserved in the laboratory. First, we focused on optimizing phage lysis conditions, including different host bacteria culture time, phage lysis time, and phage to bacterial ratios. The optimal conditions were established as follows: culturing the <em>A. hydrophila</em>-TPS strain for 6 h, adding phage at a ratio of 1:10, and mixing for 4 h, which resulted in maximum lysis of the host bacteria. Subsequently, we assessed the immune responses of groups receiving formaldehyde-inactivated vaccines compared to those receiving various concentrations of the phage lysate vaccine. Both the TPS-phage lysate and formaldehyde-inactivated vaccine groups exhibited increased levels of specific immune enzymes (ACP, AKP, LZM, SOD, CAT) and cytokines (IL-1β, TNF-α and IFN-γ) in serum, as well as enhanced humoral immunity (IgM, C3 and C4) in crucian carp. Furthermore, challenge tests conducted post-immunization demonstrated that the high concentration of the TPS strain-lysate vaccine group (1 × 10<sup>8</sup> CFU/mL) achieved the highest immune protection rate at 88.89 %. Overall, the development of the TPS-phage lysate vaccine significantly enhanced the immunity of crucian carp, providing a higher level of protection and establishing a foundation for the research and development of phage-based aquatic vaccines.</div></div>\",\"PeriodicalId\":12127,\"journal\":{\"name\":\"Fish & shellfish immunology\",\"volume\":\"155 \",\"pages\":\"Article 110011\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish & shellfish immunology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050464824006569\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464824006569","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Protective immune-response of Aeromonas hydrophila phage lysate in crucian carp against direct virulent challenge with A. hydrophila-TPS
Aeromonas hydrophila was a common opportunistic pathogen that was widely found in various aquatic environment and could cause multiple infections in humans and animals. The haemorrhagic septicemia and bacterial enteritis in fish triggered by this pathogen led to significant losses in the aquaculture industry. In this study, we aimed to develop a phage lysate vaccine by lysing the A. hydrophila-TPS strain using phage PZY-Ah, which was previously isolated and preserved in the laboratory. First, we focused on optimizing phage lysis conditions, including different host bacteria culture time, phage lysis time, and phage to bacterial ratios. The optimal conditions were established as follows: culturing the A. hydrophila-TPS strain for 6 h, adding phage at a ratio of 1:10, and mixing for 4 h, which resulted in maximum lysis of the host bacteria. Subsequently, we assessed the immune responses of groups receiving formaldehyde-inactivated vaccines compared to those receiving various concentrations of the phage lysate vaccine. Both the TPS-phage lysate and formaldehyde-inactivated vaccine groups exhibited increased levels of specific immune enzymes (ACP, AKP, LZM, SOD, CAT) and cytokines (IL-1β, TNF-α and IFN-γ) in serum, as well as enhanced humoral immunity (IgM, C3 and C4) in crucian carp. Furthermore, challenge tests conducted post-immunization demonstrated that the high concentration of the TPS strain-lysate vaccine group (1 × 108 CFU/mL) achieved the highest immune protection rate at 88.89 %. Overall, the development of the TPS-phage lysate vaccine significantly enhanced the immunity of crucian carp, providing a higher level of protection and establishing a foundation for the research and development of phage-based aquatic vaccines.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.