斑马鱼心脏发育和再生过程中不同的 vegfc 表达决定了淋巴反应。

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2024-11-15 Epub Date: 2024-11-19 DOI:10.1242/dev.202947
Sierra Duca, Yu Xia, Laila Abd Elmagid, Isaac Bakis, Miaoyan Qiu, Yingxi Cao, Ylan Guo, James V Eichenbaum, Megan L McCain, Junsu Kang, Michael R M Harrison, Jingli Cao
{"title":"斑马鱼心脏发育和再生过程中不同的 vegfc 表达决定了淋巴反应。","authors":"Sierra Duca, Yu Xia, Laila Abd Elmagid, Isaac Bakis, Miaoyan Qiu, Yingxi Cao, Ylan Guo, James V Eichenbaum, Megan L McCain, Junsu Kang, Michael R M Harrison, Jingli Cao","doi":"10.1242/dev.202947","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular endothelial growth factor C (Vegfc) is crucial for lymphatic and blood vessel development, yet its cellular sources and specific functions in heart development remain unclear. To address this, we created a vegfc reporter and an inducible overexpression line in zebrafish. We found vegfc expression in large coronary arteries, circulating thrombocytes, cardiac adipocytes, and outflow tract smooth muscle cells. Notably, although coronary lymphangiogenesis aligns with Vegfc-expressing arteries in juveniles, it occurs only after coronary artery formation. Vegfc overexpression induced ectopic lymphatics on the ventricular surface prior to arterial formation, indicating that Vegfc abundance, rather than arterial presence, drives lymphatic development. However, this overexpression did not affect coronary artery coverage, suggesting a specific role for Vegfc in lymphatic, rather than arterial, development. Thrombocytes emerged as the initial Vegfc source during inflammation following heart injuries, transitioning to endocardial and myocardial expression during regeneration. Lower Vegfc levels in an amputation model corresponded with a lack of lymphatic expansion. Importantly, Vegfc overexpression enhanced lymphatic expansion and promoted scar resolution without affecting cardiomyocyte proliferation, highlighting its role in regulating lymphangiogenesis and promoting heart regeneration.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential vegfc expression dictates lymphatic response during zebrafish heart development and regeneration.\",\"authors\":\"Sierra Duca, Yu Xia, Laila Abd Elmagid, Isaac Bakis, Miaoyan Qiu, Yingxi Cao, Ylan Guo, James V Eichenbaum, Megan L McCain, Junsu Kang, Michael R M Harrison, Jingli Cao\",\"doi\":\"10.1242/dev.202947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular endothelial growth factor C (Vegfc) is crucial for lymphatic and blood vessel development, yet its cellular sources and specific functions in heart development remain unclear. To address this, we created a vegfc reporter and an inducible overexpression line in zebrafish. We found vegfc expression in large coronary arteries, circulating thrombocytes, cardiac adipocytes, and outflow tract smooth muscle cells. Notably, although coronary lymphangiogenesis aligns with Vegfc-expressing arteries in juveniles, it occurs only after coronary artery formation. Vegfc overexpression induced ectopic lymphatics on the ventricular surface prior to arterial formation, indicating that Vegfc abundance, rather than arterial presence, drives lymphatic development. However, this overexpression did not affect coronary artery coverage, suggesting a specific role for Vegfc in lymphatic, rather than arterial, development. Thrombocytes emerged as the initial Vegfc source during inflammation following heart injuries, transitioning to endocardial and myocardial expression during regeneration. Lower Vegfc levels in an amputation model corresponded with a lack of lymphatic expansion. Importantly, Vegfc overexpression enhanced lymphatic expansion and promoted scar resolution without affecting cardiomyocyte proliferation, highlighting its role in regulating lymphangiogenesis and promoting heart regeneration.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.202947\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.202947","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血管内皮生长因子 C(Vegfc)对淋巴和血管的发育至关重要,但它在心脏发育中的细胞来源和具体功能仍不清楚。为了解决这个问题,我们在斑马鱼中创建了一个 vegfc 报告基因和一个诱导性过表达系。我们在大冠状动脉、循环血小板、心脏脂肪细胞和流出道平滑肌细胞中发现了 vegfc 的表达。值得注意的是,虽然幼鱼的冠状淋巴管生成与Vegfc表达的动脉一致,但它只发生在冠状动脉形成之后。在动脉形成之前,Vegfc的过表达诱导了心室表面的异位淋巴管,这表明Vegfc的丰度,而不是动脉的存在,驱动了淋巴管的发育。然而,这种过表达并不影响冠状动脉的覆盖,这表明Vegfc在淋巴而非动脉发育中发挥了特殊作用。在心脏损伤后的炎症过程中,血栓细胞成为 Vegfc 的最初来源,在再生过程中则过渡到心内膜和心肌的表达。截肢模型中较低的Vegfc水平与淋巴管扩张不足相对应。重要的是,Vegfc的过表达增强了淋巴管扩张,促进了疤痕的愈合,而不影响心肌细胞的增殖,突出了它在调节淋巴管生成和促进心脏再生方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential vegfc expression dictates lymphatic response during zebrafish heart development and regeneration.

Vascular endothelial growth factor C (Vegfc) is crucial for lymphatic and blood vessel development, yet its cellular sources and specific functions in heart development remain unclear. To address this, we created a vegfc reporter and an inducible overexpression line in zebrafish. We found vegfc expression in large coronary arteries, circulating thrombocytes, cardiac adipocytes, and outflow tract smooth muscle cells. Notably, although coronary lymphangiogenesis aligns with Vegfc-expressing arteries in juveniles, it occurs only after coronary artery formation. Vegfc overexpression induced ectopic lymphatics on the ventricular surface prior to arterial formation, indicating that Vegfc abundance, rather than arterial presence, drives lymphatic development. However, this overexpression did not affect coronary artery coverage, suggesting a specific role for Vegfc in lymphatic, rather than arterial, development. Thrombocytes emerged as the initial Vegfc source during inflammation following heart injuries, transitioning to endocardial and myocardial expression during regeneration. Lower Vegfc levels in an amputation model corresponded with a lack of lymphatic expansion. Importantly, Vegfc overexpression enhanced lymphatic expansion and promoted scar resolution without affecting cardiomyocyte proliferation, highlighting its role in regulating lymphangiogenesis and promoting heart regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信