Shiva Vanukuru , Fraser Steele , Natalia N. Porfiryeva , Alejandro Sosnik , Vitaliy V. Khutoryanskiy
{"title":"用甲基丙烯酰基和巴豆酰基对壳聚糖进行官能化处理,以增强其粘附性。","authors":"Shiva Vanukuru , Fraser Steele , Natalia N. Porfiryeva , Alejandro Sosnik , Vitaliy V. Khutoryanskiy","doi":"10.1016/j.ejpb.2024.114575","DOIUrl":null,"url":null,"abstract":"<div><div>Mucoadhesive polymers are crucial for prolonging drug retention on mucosal surfaces. This study focuses on synthesising and characterising novel derivatives by reacting chitosan with crotonic and methacrylic anhydrides. The structure of the resulting derivatives was confirmed using proton-nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. It was established that the degree of substitution plays a crucial role in the pH-dependent solubility profiles and electrophoretic mobility of the chitosan derivatives. Spray-drying chitosan solutions enabled preparation of microparticles, whose mucoadhesive properties were evaluated using fluorescence flow-through studies and tensile test, demonstrating improved retention on sheep nasal mucosa for modified derivatives. Acute toxicity studies conducted <em>in vivo</em> using planaria and <em>in vitro</em> using MTT assay with the Caco-2 cell line, a model of the mucosal epithelium <em>in vitro</em>, showed that the novel derivatives are not cytotoxic. These findings emphasise the potential of tailored chitosan chemical modifications for enhancing transmucosal drug delivery.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114575"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalisation of chitosan with methacryloyl and crotonoyl groups as a strategy to enhance its mucoadhesive properties\",\"authors\":\"Shiva Vanukuru , Fraser Steele , Natalia N. Porfiryeva , Alejandro Sosnik , Vitaliy V. Khutoryanskiy\",\"doi\":\"10.1016/j.ejpb.2024.114575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mucoadhesive polymers are crucial for prolonging drug retention on mucosal surfaces. This study focuses on synthesising and characterising novel derivatives by reacting chitosan with crotonic and methacrylic anhydrides. The structure of the resulting derivatives was confirmed using proton-nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. It was established that the degree of substitution plays a crucial role in the pH-dependent solubility profiles and electrophoretic mobility of the chitosan derivatives. Spray-drying chitosan solutions enabled preparation of microparticles, whose mucoadhesive properties were evaluated using fluorescence flow-through studies and tensile test, demonstrating improved retention on sheep nasal mucosa for modified derivatives. Acute toxicity studies conducted <em>in vivo</em> using planaria and <em>in vitro</em> using MTT assay with the Caco-2 cell line, a model of the mucosal epithelium <em>in vitro</em>, showed that the novel derivatives are not cytotoxic. These findings emphasise the potential of tailored chitosan chemical modifications for enhancing transmucosal drug delivery.</div></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\"205 \",\"pages\":\"Article 114575\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124004016\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124004016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Functionalisation of chitosan with methacryloyl and crotonoyl groups as a strategy to enhance its mucoadhesive properties
Mucoadhesive polymers are crucial for prolonging drug retention on mucosal surfaces. This study focuses on synthesising and characterising novel derivatives by reacting chitosan with crotonic and methacrylic anhydrides. The structure of the resulting derivatives was confirmed using proton-nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. It was established that the degree of substitution plays a crucial role in the pH-dependent solubility profiles and electrophoretic mobility of the chitosan derivatives. Spray-drying chitosan solutions enabled preparation of microparticles, whose mucoadhesive properties were evaluated using fluorescence flow-through studies and tensile test, demonstrating improved retention on sheep nasal mucosa for modified derivatives. Acute toxicity studies conducted in vivo using planaria and in vitro using MTT assay with the Caco-2 cell line, a model of the mucosal epithelium in vitro, showed that the novel derivatives are not cytotoxic. These findings emphasise the potential of tailored chitosan chemical modifications for enhancing transmucosal drug delivery.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.