{"title":"Pontederia cordata 中的乙二醛酶系统、抗坏血酸-谷胱甘肽循环和抗氧化酶对铅胁迫的反应及其除铅能力。","authors":"Jianpan Xin, Sisi Ma, Runan Tian","doi":"10.1080/15226514.2024.2421362","DOIUrl":null,"url":null,"abstract":"<p><p>A hydroponic experiment was conducted to investigate the variations in membrane permeabilities, chlorophyll contents, antioxidase activities, the ascorbic acid (AsA)-glutathione (GSH) cycle, and the glyoxalase system in the leaves of <i>Pontederia cordata</i> with 0 ∼ 15.0 mg L<sup>-1</sup> lead ion (Pb<sup>2+</sup>) exposure. The concentrations of Pb<sup>2+</sup> accumulated in the plant roots, stems, and leaves were also evaluated. After 7 days of exposure, the plants maintained normal growth, and there was a significant increase in ascorbate peroxidase and dehydroascorbate reductase activities. With 5.0 mg L<sup>-1</sup> Pb<sup>2+</sup> exposure for 28 days, nearly 66.36% of Pb<sup>2+</sup> accumulated in the roots, while excess Pb<sup>2+</sup> immobilized in the leaves was not observed. Exposure to 10.0 and 15.0 mg L<sup>-1</sup> Pb<sup>2+</sup> for 28 days significantly increased Pb<sup>2+</sup> contents in the leaves. This led to decrease in chlorophyll <i>a, b</i>, and carotenoid contents, and to increase in the methylglyoxal content in the leaves. With 10 and 15 mg L<sup>-1</sup> Pb<sup>2+</sup> exposure, NPT and PCs contents in leaves increased. however, the glyoxalase system did not function well in the plant tolerant to Pb<sup>2+</sup> at higher concentrations. The AsA-GSH cycle did not cooperate with the glyoxalase system in the plant defense against Pb<sup>2+</sup> exposure in the present investigation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of glyoxalase system, ascorbate-glutathione cycle, and antioxidant enzymes in <i>Pontederia cordata</i> to lead stress and its capacity to remove lead.\",\"authors\":\"Jianpan Xin, Sisi Ma, Runan Tian\",\"doi\":\"10.1080/15226514.2024.2421362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A hydroponic experiment was conducted to investigate the variations in membrane permeabilities, chlorophyll contents, antioxidase activities, the ascorbic acid (AsA)-glutathione (GSH) cycle, and the glyoxalase system in the leaves of <i>Pontederia cordata</i> with 0 ∼ 15.0 mg L<sup>-1</sup> lead ion (Pb<sup>2+</sup>) exposure. The concentrations of Pb<sup>2+</sup> accumulated in the plant roots, stems, and leaves were also evaluated. After 7 days of exposure, the plants maintained normal growth, and there was a significant increase in ascorbate peroxidase and dehydroascorbate reductase activities. With 5.0 mg L<sup>-1</sup> Pb<sup>2+</sup> exposure for 28 days, nearly 66.36% of Pb<sup>2+</sup> accumulated in the roots, while excess Pb<sup>2+</sup> immobilized in the leaves was not observed. Exposure to 10.0 and 15.0 mg L<sup>-1</sup> Pb<sup>2+</sup> for 28 days significantly increased Pb<sup>2+</sup> contents in the leaves. This led to decrease in chlorophyll <i>a, b</i>, and carotenoid contents, and to increase in the methylglyoxal content in the leaves. With 10 and 15 mg L<sup>-1</sup> Pb<sup>2+</sup> exposure, NPT and PCs contents in leaves increased. however, the glyoxalase system did not function well in the plant tolerant to Pb<sup>2+</sup> at higher concentrations. The AsA-GSH cycle did not cooperate with the glyoxalase system in the plant defense against Pb<sup>2+</sup> exposure in the present investigation.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2421362\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2421362","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Responses of glyoxalase system, ascorbate-glutathione cycle, and antioxidant enzymes in Pontederia cordata to lead stress and its capacity to remove lead.
A hydroponic experiment was conducted to investigate the variations in membrane permeabilities, chlorophyll contents, antioxidase activities, the ascorbic acid (AsA)-glutathione (GSH) cycle, and the glyoxalase system in the leaves of Pontederia cordata with 0 ∼ 15.0 mg L-1 lead ion (Pb2+) exposure. The concentrations of Pb2+ accumulated in the plant roots, stems, and leaves were also evaluated. After 7 days of exposure, the plants maintained normal growth, and there was a significant increase in ascorbate peroxidase and dehydroascorbate reductase activities. With 5.0 mg L-1 Pb2+ exposure for 28 days, nearly 66.36% of Pb2+ accumulated in the roots, while excess Pb2+ immobilized in the leaves was not observed. Exposure to 10.0 and 15.0 mg L-1 Pb2+ for 28 days significantly increased Pb2+ contents in the leaves. This led to decrease in chlorophyll a, b, and carotenoid contents, and to increase in the methylglyoxal content in the leaves. With 10 and 15 mg L-1 Pb2+ exposure, NPT and PCs contents in leaves increased. however, the glyoxalase system did not function well in the plant tolerant to Pb2+ at higher concentrations. The AsA-GSH cycle did not cooperate with the glyoxalase system in the plant defense against Pb2+ exposure in the present investigation.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.