Khadijeh Shabani, Johannes Krupp, Emilie Lemesre, Nicolas Lévy, Helene Tran
{"title":"DEE 中的电压门控离子通道补偿效应:对未来疗法的启示","authors":"Khadijeh Shabani, Johannes Krupp, Emilie Lemesre, Nicolas Lévy, Helene Tran","doi":"10.3390/cells13211763","DOIUrl":null,"url":null,"abstract":"<p><p>Developmental and Epileptic Encephalopathies (DEEs) represent a clinically and genetically heterogeneous group of rare and severe epilepsies. DEEs commonly begin early in infancy with frequent seizures of various types associated with intellectual disability and leading to a neurodevelopmental delay or regression. Disease-causing genomic variants have been identified in numerous genes and are implicated in over 100 types of DEEs. In this context, genes encoding voltage-gated ion channels (VGCs) play a significant role, and part of the large phenotypic variability observed in DEE patients carrying VGC mutations could be explained by the presence of genetic modifier alleles that can compensate for these mutations. This review will focus on the current knowledge of the compensatory effect of DEE-associated voltage-gated ion channels and their therapeutic implications in DEE. We will enter into detailed considerations regarding the sodium channels SCN1A, SCN2A, and SCN8A; the potassium channels KCNA1, KCNQ2, and KCNT1; and the calcium channels CACNA1A and CACNA1G.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Voltage-Gated Ion Channel Compensatory Effect in DEE: Implications for Future Therapies.\",\"authors\":\"Khadijeh Shabani, Johannes Krupp, Emilie Lemesre, Nicolas Lévy, Helene Tran\",\"doi\":\"10.3390/cells13211763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developmental and Epileptic Encephalopathies (DEEs) represent a clinically and genetically heterogeneous group of rare and severe epilepsies. DEEs commonly begin early in infancy with frequent seizures of various types associated with intellectual disability and leading to a neurodevelopmental delay or regression. Disease-causing genomic variants have been identified in numerous genes and are implicated in over 100 types of DEEs. In this context, genes encoding voltage-gated ion channels (VGCs) play a significant role, and part of the large phenotypic variability observed in DEE patients carrying VGC mutations could be explained by the presence of genetic modifier alleles that can compensate for these mutations. This review will focus on the current knowledge of the compensatory effect of DEE-associated voltage-gated ion channels and their therapeutic implications in DEE. We will enter into detailed considerations regarding the sodium channels SCN1A, SCN2A, and SCN8A; the potassium channels KCNA1, KCNQ2, and KCNT1; and the calcium channels CACNA1A and CACNA1G.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13211763\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cells13211763","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
发育性癫痫性脑病(DEEs)是一组临床和遗传异质性的罕见严重癫痫。发育性和癫痫性脑病通常起病于婴儿早期,各种类型的癫痫频繁发作,伴有智力障碍,导致神经发育迟缓或倒退。目前已在许多基因中发现了致病基因组变异,与 100 多种 DEEs 有关联。在这种情况下,编码电压门控离子通道(VGC)的基因发挥了重要作用,而在携带 VGC 突变的 DEE 患者身上观察到的巨大表型变异,部分原因可能是存在可补偿这些突变的遗传修饰等位基因。本综述将重点介绍目前对 DEE 相关电压门控离子通道的代偿效应及其对 DEE 的治疗意义的了解。我们将详细讨论钠通道 SCN1A、SCN2A 和 SCN8A;钾通道 KCNA1、KCNQ2 和 KCNT1;以及钙通道 CACNA1A 和 CACNA1G。
Voltage-Gated Ion Channel Compensatory Effect in DEE: Implications for Future Therapies.
Developmental and Epileptic Encephalopathies (DEEs) represent a clinically and genetically heterogeneous group of rare and severe epilepsies. DEEs commonly begin early in infancy with frequent seizures of various types associated with intellectual disability and leading to a neurodevelopmental delay or regression. Disease-causing genomic variants have been identified in numerous genes and are implicated in over 100 types of DEEs. In this context, genes encoding voltage-gated ion channels (VGCs) play a significant role, and part of the large phenotypic variability observed in DEE patients carrying VGC mutations could be explained by the presence of genetic modifier alleles that can compensate for these mutations. This review will focus on the current knowledge of the compensatory effect of DEE-associated voltage-gated ion channels and their therapeutic implications in DEE. We will enter into detailed considerations regarding the sodium channels SCN1A, SCN2A, and SCN8A; the potassium channels KCNA1, KCNQ2, and KCNT1; and the calcium channels CACNA1A and CACNA1G.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.