{"title":"从热解棕榈仁壳木醋中提取的生物材料--火醛提取物可作为新型糖尿病伤口愈合辅助材料:一项动物研究。","authors":"Yongyuth Theapparat, Sunisa Khongthong, Natthrit Roekngam, Tan Suwandecha, Jongdee Nopparat, Damrongsak Faroongsarng","doi":"10.1080/03639045.2024.2427795","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Wound in diabetes is difficult to heal since it possesses excessive inflammation. The aim of the study was to evaluate wound healing activity of chitosan-based hydrogel containing pyroligneous acid in diabetic animals.</p><p><strong>Significance: </strong>Pyroligneous acid, a byproduct of biochar production from palm kernel shell biomass, contained oxygenated compounds which, with extracting enrichment, could promote wound healing.</p><p><strong>Methods: </strong>Streptozotocin-induced diabetic male jcl: ICR mice were subjected to create wounds and treat with hydrogel containing pyroligneous extract at dose strengths of 0 (placebo), 100 and 150 μg/g-gel. Commercial gel (Intrasite®) was used as an active comparator. On 3-, 7-, 10- and 14-day post wounding, wound contraction was rated and wound site tissues were collected. The specimens were H&E stained and microscopically examined to evaluate histological responses. The underline wound healing related cytokine and polypeptide expressions were determined using real-time PCR and western blot.</p><p><strong>Results: </strong>It was found that the extract accelerated the healing process in a dose-dependent manner where at dose strength of 150 μg/g-gel was as effective as active comparator. It increased gene expression of the cytokine and related proteins in TGF-β/SMAD signaling pathway and may further activate diabetic induced TGF-β downregulation to restore up to the level that healthy skin tissues express. It also enhanced the expressions of Akt, FAK, RhoA and Rac-1 and evidently activated phosphorylation of Akt and FAK.</p><p><strong>Conclusion: </strong>The study demonstrated the extract could be a novel biomaterial for healing of such a chronic inflammatory wound as the wound in diabetes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyroligneous extract, a biomaterial derived from pyrolytic palm kernel shell wood vinegar, as a novel diabetic wound healing aid: An animal study.\",\"authors\":\"Yongyuth Theapparat, Sunisa Khongthong, Natthrit Roekngam, Tan Suwandecha, Jongdee Nopparat, Damrongsak Faroongsarng\",\"doi\":\"10.1080/03639045.2024.2427795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Wound in diabetes is difficult to heal since it possesses excessive inflammation. The aim of the study was to evaluate wound healing activity of chitosan-based hydrogel containing pyroligneous acid in diabetic animals.</p><p><strong>Significance: </strong>Pyroligneous acid, a byproduct of biochar production from palm kernel shell biomass, contained oxygenated compounds which, with extracting enrichment, could promote wound healing.</p><p><strong>Methods: </strong>Streptozotocin-induced diabetic male jcl: ICR mice were subjected to create wounds and treat with hydrogel containing pyroligneous extract at dose strengths of 0 (placebo), 100 and 150 μg/g-gel. Commercial gel (Intrasite®) was used as an active comparator. On 3-, 7-, 10- and 14-day post wounding, wound contraction was rated and wound site tissues were collected. The specimens were H&E stained and microscopically examined to evaluate histological responses. The underline wound healing related cytokine and polypeptide expressions were determined using real-time PCR and western blot.</p><p><strong>Results: </strong>It was found that the extract accelerated the healing process in a dose-dependent manner where at dose strength of 150 μg/g-gel was as effective as active comparator. It increased gene expression of the cytokine and related proteins in TGF-β/SMAD signaling pathway and may further activate diabetic induced TGF-β downregulation to restore up to the level that healthy skin tissues express. It also enhanced the expressions of Akt, FAK, RhoA and Rac-1 and evidently activated phosphorylation of Akt and FAK.</p><p><strong>Conclusion: </strong>The study demonstrated the extract could be a novel biomaterial for healing of such a chronic inflammatory wound as the wound in diabetes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03639045.2024.2427795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2427795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Pyroligneous extract, a biomaterial derived from pyrolytic palm kernel shell wood vinegar, as a novel diabetic wound healing aid: An animal study.
Objective: Wound in diabetes is difficult to heal since it possesses excessive inflammation. The aim of the study was to evaluate wound healing activity of chitosan-based hydrogel containing pyroligneous acid in diabetic animals.
Significance: Pyroligneous acid, a byproduct of biochar production from palm kernel shell biomass, contained oxygenated compounds which, with extracting enrichment, could promote wound healing.
Methods: Streptozotocin-induced diabetic male jcl: ICR mice were subjected to create wounds and treat with hydrogel containing pyroligneous extract at dose strengths of 0 (placebo), 100 and 150 μg/g-gel. Commercial gel (Intrasite®) was used as an active comparator. On 3-, 7-, 10- and 14-day post wounding, wound contraction was rated and wound site tissues were collected. The specimens were H&E stained and microscopically examined to evaluate histological responses. The underline wound healing related cytokine and polypeptide expressions were determined using real-time PCR and western blot.
Results: It was found that the extract accelerated the healing process in a dose-dependent manner where at dose strength of 150 μg/g-gel was as effective as active comparator. It increased gene expression of the cytokine and related proteins in TGF-β/SMAD signaling pathway and may further activate diabetic induced TGF-β downregulation to restore up to the level that healthy skin tissues express. It also enhanced the expressions of Akt, FAK, RhoA and Rac-1 and evidently activated phosphorylation of Akt and FAK.
Conclusion: The study demonstrated the extract could be a novel biomaterial for healing of such a chronic inflammatory wound as the wound in diabetes.