Mohammed K Shakeel, Paul D Metzak, Mike Lasby, Xiangyu Long, Roberto Souza, Signe Bray, Benjamin I Goldstein, Glenda MacQueen, JianLi Wang, Sidney H Kennedy, Jean Addington, Catherine Lebel
{"title":"严重精神疾病高危青少年的大脑连接体:纵向视角。","authors":"Mohammed K Shakeel, Paul D Metzak, Mike Lasby, Xiangyu Long, Roberto Souza, Signe Bray, Benjamin I Goldstein, Glenda MacQueen, JianLi Wang, Sidney H Kennedy, Jean Addington, Catherine Lebel","doi":"10.1007/s11682-024-00953-z","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying biomarkers for serious mental illnesses (SMI) has significant implications for prevention and early intervention. In the current study, changes in whole brain structural and functional connectomes were investigated in youth at transdiagnostic risk over a one-year period. Based on clinical assessments, participants were assigned to one of 5 groups: healthy controls (HC; n = 33), familial risk for serious mental illness (stage 0; n = 31), mild symptoms (stage 1a; n = 37), attenuated syndromes (stage 1b; n = 61), or discrete disorder (transition; n = 9). Constrained spherical deconvolution was used to generate whole brain tractography maps, which were then used to calculate connectivity matrices for graph theory analysis. Graph theory was also used to analyze correlations of functional magnetic resonance imaging (fMRI) signal between pairs of brain regions. Linear mixed models revealed structural and functional abnormalities in global metrics of small world lambda, and resting state networks involving the fronto-parietal, default mode, and deep grey matter networks, along with the visual and dorsal attention networks. Machine learning analysis additionally identified changes in nodal metrics of betweenness centrality in the angular gyrus and bilateral temporal gyri as potential features which can discriminate between the groups. Our findings further support the view that abnormalities in large scale networks (particularly those involving fronto-parietal, temporal, default mode, and deep grey matter networks) may underlie transdiagnostic risk for SMIs.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain connectomes in youth at risk for serious mental illness: a longitudinal perspective.\",\"authors\":\"Mohammed K Shakeel, Paul D Metzak, Mike Lasby, Xiangyu Long, Roberto Souza, Signe Bray, Benjamin I Goldstein, Glenda MacQueen, JianLi Wang, Sidney H Kennedy, Jean Addington, Catherine Lebel\",\"doi\":\"10.1007/s11682-024-00953-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying biomarkers for serious mental illnesses (SMI) has significant implications for prevention and early intervention. In the current study, changes in whole brain structural and functional connectomes were investigated in youth at transdiagnostic risk over a one-year period. Based on clinical assessments, participants were assigned to one of 5 groups: healthy controls (HC; n = 33), familial risk for serious mental illness (stage 0; n = 31), mild symptoms (stage 1a; n = 37), attenuated syndromes (stage 1b; n = 61), or discrete disorder (transition; n = 9). Constrained spherical deconvolution was used to generate whole brain tractography maps, which were then used to calculate connectivity matrices for graph theory analysis. Graph theory was also used to analyze correlations of functional magnetic resonance imaging (fMRI) signal between pairs of brain regions. Linear mixed models revealed structural and functional abnormalities in global metrics of small world lambda, and resting state networks involving the fronto-parietal, default mode, and deep grey matter networks, along with the visual and dorsal attention networks. Machine learning analysis additionally identified changes in nodal metrics of betweenness centrality in the angular gyrus and bilateral temporal gyri as potential features which can discriminate between the groups. Our findings further support the view that abnormalities in large scale networks (particularly those involving fronto-parietal, temporal, default mode, and deep grey matter networks) may underlie transdiagnostic risk for SMIs.</p>\",\"PeriodicalId\":9192,\"journal\":{\"name\":\"Brain Imaging and Behavior\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Imaging and Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11682-024-00953-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Imaging and Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-024-00953-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Brain connectomes in youth at risk for serious mental illness: a longitudinal perspective.
Identifying biomarkers for serious mental illnesses (SMI) has significant implications for prevention and early intervention. In the current study, changes in whole brain structural and functional connectomes were investigated in youth at transdiagnostic risk over a one-year period. Based on clinical assessments, participants were assigned to one of 5 groups: healthy controls (HC; n = 33), familial risk for serious mental illness (stage 0; n = 31), mild symptoms (stage 1a; n = 37), attenuated syndromes (stage 1b; n = 61), or discrete disorder (transition; n = 9). Constrained spherical deconvolution was used to generate whole brain tractography maps, which were then used to calculate connectivity matrices for graph theory analysis. Graph theory was also used to analyze correlations of functional magnetic resonance imaging (fMRI) signal between pairs of brain regions. Linear mixed models revealed structural and functional abnormalities in global metrics of small world lambda, and resting state networks involving the fronto-parietal, default mode, and deep grey matter networks, along with the visual and dorsal attention networks. Machine learning analysis additionally identified changes in nodal metrics of betweenness centrality in the angular gyrus and bilateral temporal gyri as potential features which can discriminate between the groups. Our findings further support the view that abnormalities in large scale networks (particularly those involving fronto-parietal, temporal, default mode, and deep grey matter networks) may underlie transdiagnostic risk for SMIs.
期刊介绍:
Brain Imaging and Behavior is a bi-monthly, peer-reviewed journal, that publishes clinically relevant research using neuroimaging approaches to enhance our understanding of disorders of higher brain function. The journal is targeted at clinicians and researchers in fields concerned with human brain-behavior relationships, such as neuropsychology, psychiatry, neurology, neurosurgery, rehabilitation, and cognitive neuroscience.