鱼类细胞球体--模拟体内研究的有望体外模型:综述。

IF 5.1 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2024-11-04 DOI:10.3390/cells13211818
Antonio Gómez-Mercader, Luis Monzón-Atienza, Daniel Montero, Jimena Bravo, Félix Acosta
{"title":"鱼类细胞球体--模拟体内研究的有望体外模型:综述。","authors":"Antonio Gómez-Mercader, Luis Monzón-Atienza, Daniel Montero, Jimena Bravo, Félix Acosta","doi":"10.3390/cells13211818","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro cell culture systems serve as instrumental platforms for probing biological phenomena and elucidating intricate cellular mechanisms. These systems afford researchers the opportunity to scrutinize cellular responses within a regulated environment, thereby circumventing the ethical and logistical challenges associated with in vivo experimentation. Three-dimensional (3D) cell cultures have emerged as a viable alternative to mimic in vivo environments. Within this context, spheroids are recognized as one of the most straightforward and efficacious models, presenting a promising substitute for conventional monolayer cultures. The application of 3D cultures of fish cells remains limited, focusing mainly on physiological and morphological characterization studies. However, given the capacity of spheroids to emulate in vivo conditions, researchers are exploring diverse applications of these 3D cultures. These include eco-toxicology, immunology, drug screening, endocrinology, and metabolism studies, employing a variety of cell types such as fibroblasts, hepatocytes, embryonic cells, gonadal cells, gastrointestinal cells, and pituitary cells. This review provides a succinct overview, concentrating on the most frequently employed methods for generating fish cell spheroids and their applications to date. The aim is to compile and highlight the significant contributions of these methods to the field and their potential for future research.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fish Cell Spheroids, a Promising In Vitro Model to Mimic In Vivo Research: A Review.\",\"authors\":\"Antonio Gómez-Mercader, Luis Monzón-Atienza, Daniel Montero, Jimena Bravo, Félix Acosta\",\"doi\":\"10.3390/cells13211818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In vitro cell culture systems serve as instrumental platforms for probing biological phenomena and elucidating intricate cellular mechanisms. These systems afford researchers the opportunity to scrutinize cellular responses within a regulated environment, thereby circumventing the ethical and logistical challenges associated with in vivo experimentation. Three-dimensional (3D) cell cultures have emerged as a viable alternative to mimic in vivo environments. Within this context, spheroids are recognized as one of the most straightforward and efficacious models, presenting a promising substitute for conventional monolayer cultures. The application of 3D cultures of fish cells remains limited, focusing mainly on physiological and morphological characterization studies. However, given the capacity of spheroids to emulate in vivo conditions, researchers are exploring diverse applications of these 3D cultures. These include eco-toxicology, immunology, drug screening, endocrinology, and metabolism studies, employing a variety of cell types such as fibroblasts, hepatocytes, embryonic cells, gonadal cells, gastrointestinal cells, and pituitary cells. This review provides a succinct overview, concentrating on the most frequently employed methods for generating fish cell spheroids and their applications to date. The aim is to compile and highlight the significant contributions of these methods to the field and their potential for future research.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13211818\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cells13211818","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

体外细胞培养系统是探究生物现象和阐明复杂细胞机制的工具平台。这些系统为研究人员提供了在规范环境中仔细观察细胞反应的机会,从而规避了与体内实验相关的伦理和后勤挑战。三维(3D)细胞培养已成为模拟体内环境的可行替代方法。在此背景下,球形细胞被认为是最直接、最有效的模型之一,有望取代传统的单层培养。鱼类细胞三维培养的应用仍然有限,主要集中在生理和形态特征研究方面。不过,鉴于球形培养物能够模拟体内条件,研究人员正在探索这些三维培养物的多种应用。这些应用包括生态毒理学、免疫学、药物筛选、内分泌学和新陈代谢研究,采用的细胞类型多种多样,如成纤维细胞、肝细胞、胚胎细胞、性腺细胞、胃肠道细胞和垂体细胞。本综述简明扼要地概述了迄今为止最常用的生成鱼细胞球的方法及其应用。目的是汇编和强调这些方法对该领域的重大贡献及其在未来研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fish Cell Spheroids, a Promising In Vitro Model to Mimic In Vivo Research: A Review.

In vitro cell culture systems serve as instrumental platforms for probing biological phenomena and elucidating intricate cellular mechanisms. These systems afford researchers the opportunity to scrutinize cellular responses within a regulated environment, thereby circumventing the ethical and logistical challenges associated with in vivo experimentation. Three-dimensional (3D) cell cultures have emerged as a viable alternative to mimic in vivo environments. Within this context, spheroids are recognized as one of the most straightforward and efficacious models, presenting a promising substitute for conventional monolayer cultures. The application of 3D cultures of fish cells remains limited, focusing mainly on physiological and morphological characterization studies. However, given the capacity of spheroids to emulate in vivo conditions, researchers are exploring diverse applications of these 3D cultures. These include eco-toxicology, immunology, drug screening, endocrinology, and metabolism studies, employing a variety of cell types such as fibroblasts, hepatocytes, embryonic cells, gonadal cells, gastrointestinal cells, and pituitary cells. This review provides a succinct overview, concentrating on the most frequently employed methods for generating fish cell spheroids and their applications to date. The aim is to compile and highlight the significant contributions of these methods to the field and their potential for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信