Aymane Kricha, Najat Bouchmaa, Sanae Ben Mkaddem, Abdellatif Abbaoui, Reda Ben Mrid, Rachid El Fatimy
{"title":"胶质母细胞瘤相关巨噬细胞:克服胶质母细胞瘤耐药性的关键靶点","authors":"Aymane Kricha, Najat Bouchmaa, Sanae Ben Mkaddem, Abdellatif Abbaoui, Reda Ben Mrid, Rachid El Fatimy","doi":"10.1016/j.cytogfr.2024.10.009","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is recognized as the most aggressive and malignant form of brain cancer, characterized by a highly heterogeneous phenotype, poor prognosis, and a median survival time of less than 16 months. Recent studies have highlighted the critical role of glioblastoma-associated macrophages (GAMs) in promoting tumor progression and resistance not only to immunotherapy but also to radiotherapy and chemotherapy. GAMs actively suppress immune responses, promote angiogenesis, facilitate tumor metastasis, and induce therapy resistance, through various mechanisms such as cytokines production, signaling pathways regulation, and angiogenesis. In this context, understanding these regulatory mechanisms is essential for developing efficient therapies. Preclinical studies have investigated diverse approaches to target these cells, both as monotherapies or in combination with other treatments. While these approaches have shown promise in strengthening antitumor immune responses in animal models, their clinical success remains to be fully determined. Herein, we provide a comprehensive overview of GAMs's role in GBM therapeutic resistance and summarizes existing approaches to target GAMs in overcoming tumor resistance.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glioblastoma-associated macrophages: A key target in overcoming glioblastoma therapeutic resistance.\",\"authors\":\"Aymane Kricha, Najat Bouchmaa, Sanae Ben Mkaddem, Abdellatif Abbaoui, Reda Ben Mrid, Rachid El Fatimy\",\"doi\":\"10.1016/j.cytogfr.2024.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme (GBM) is recognized as the most aggressive and malignant form of brain cancer, characterized by a highly heterogeneous phenotype, poor prognosis, and a median survival time of less than 16 months. Recent studies have highlighted the critical role of glioblastoma-associated macrophages (GAMs) in promoting tumor progression and resistance not only to immunotherapy but also to radiotherapy and chemotherapy. GAMs actively suppress immune responses, promote angiogenesis, facilitate tumor metastasis, and induce therapy resistance, through various mechanisms such as cytokines production, signaling pathways regulation, and angiogenesis. In this context, understanding these regulatory mechanisms is essential for developing efficient therapies. Preclinical studies have investigated diverse approaches to target these cells, both as monotherapies or in combination with other treatments. While these approaches have shown promise in strengthening antitumor immune responses in animal models, their clinical success remains to be fully determined. Herein, we provide a comprehensive overview of GAMs's role in GBM therapeutic resistance and summarizes existing approaches to target GAMs in overcoming tumor resistance.</p>\",\"PeriodicalId\":11132,\"journal\":{\"name\":\"Cytokine & Growth Factor Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokine & Growth Factor Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cytogfr.2024.10.009\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine & Growth Factor Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cytogfr.2024.10.009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Glioblastoma-associated macrophages: A key target in overcoming glioblastoma therapeutic resistance.
Glioblastoma multiforme (GBM) is recognized as the most aggressive and malignant form of brain cancer, characterized by a highly heterogeneous phenotype, poor prognosis, and a median survival time of less than 16 months. Recent studies have highlighted the critical role of glioblastoma-associated macrophages (GAMs) in promoting tumor progression and resistance not only to immunotherapy but also to radiotherapy and chemotherapy. GAMs actively suppress immune responses, promote angiogenesis, facilitate tumor metastasis, and induce therapy resistance, through various mechanisms such as cytokines production, signaling pathways regulation, and angiogenesis. In this context, understanding these regulatory mechanisms is essential for developing efficient therapies. Preclinical studies have investigated diverse approaches to target these cells, both as monotherapies or in combination with other treatments. While these approaches have shown promise in strengthening antitumor immune responses in animal models, their clinical success remains to be fully determined. Herein, we provide a comprehensive overview of GAMs's role in GBM therapeutic resistance and summarizes existing approaches to target GAMs in overcoming tumor resistance.
期刊介绍:
Cytokine & Growth Factor Reviews is a leading publication that focuses on the dynamic fields of growth factor and cytokine research. Our journal offers a platform for authors to disseminate thought-provoking articles such as critical reviews, state-of-the-art reviews, letters to the editor, and meeting reviews.
We aim to cover important breakthroughs in these rapidly evolving areas, providing valuable insights into the multidisciplinary significance of cytokines and growth factors. Our journal spans various domains including signal transduction, cell growth and differentiation, embryonic development, immunology, tumorigenesis, and clinical medicine.
By publishing cutting-edge research and analysis, we aim to influence the way researchers and experts perceive and understand growth factors and cytokines. We encourage novel expressions of ideas and innovative approaches to organizing content, fostering a stimulating environment for knowledge exchange and scientific advancement.