Andreas Müller, Bogdan Lyubarskyy, Jurij Tchoumakov, Maike Wagner, Bettina Sprang, Florian Ringel, Ella L Kim
{"title":"ALDH1A3有助于抑制辐射诱导的自我更新,并在分化初期促进缺乏 p53 的胶质母细胞瘤干细胞的增殖活性。","authors":"Andreas Müller, Bogdan Lyubarskyy, Jurij Tchoumakov, Maike Wagner, Bettina Sprang, Florian Ringel, Ella L Kim","doi":"10.3390/cells13211802","DOIUrl":null,"url":null,"abstract":"<p><p>ALDH1A3 is a marker for mesenchymal glioblastomas characterized by a greater degree of aggressiveness compared to other major subtypes. ADH1A3 has been implicated in the regulation of stemness and radioresistance mediated by glioblastoma stem cells. Mechanisms by which ALDH1A3 promotes malignant progression of glioblastoma remain elusive posing a challenge for rationalization of ALDH1A3 targeting in glioblastoma, and it is also unclear how ALDH1A3 regulates glioblastoma cells stemness. Usage of different models with diverse genetic backgrounds and often unknown degree of stemness is one possible reason for discrepant views on the role of ALDH1A3 in glioblastoma stem cells. This study clarifies ALDH1A3 impacts on glioblastoma stem cells by modelling ALDH1A3 expression in an otherwise invariable genetic background with consideration of the impacts of inherent plasticity and proliferative changes associated with transitions between cell states. Our main finding is that ALDH1A3 exerts cell-state dependent impact on proliferation of glioblastoma stem cells. We provide evidence that ALDH1A3 augments radiation-induced inhibition of self-renewal and promotes the proliferation of differentiated GSC progenies. Congruent effects ALDH1A3 and radiation on self-renewal and proliferation provides a framework for promoting glioblastoma growth under radiation treatment.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545341/pdf/","citationCount":"0","resultStr":"{\"title\":\"ALDH1A3 Contributes to Radiation-Induced Inhibition of Self-Renewal and Promotes Proliferative Activity of p53-Deficient Glioblastoma Stem Cells at the Onset of Differentiation.\",\"authors\":\"Andreas Müller, Bogdan Lyubarskyy, Jurij Tchoumakov, Maike Wagner, Bettina Sprang, Florian Ringel, Ella L Kim\",\"doi\":\"10.3390/cells13211802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ALDH1A3 is a marker for mesenchymal glioblastomas characterized by a greater degree of aggressiveness compared to other major subtypes. ADH1A3 has been implicated in the regulation of stemness and radioresistance mediated by glioblastoma stem cells. Mechanisms by which ALDH1A3 promotes malignant progression of glioblastoma remain elusive posing a challenge for rationalization of ALDH1A3 targeting in glioblastoma, and it is also unclear how ALDH1A3 regulates glioblastoma cells stemness. Usage of different models with diverse genetic backgrounds and often unknown degree of stemness is one possible reason for discrepant views on the role of ALDH1A3 in glioblastoma stem cells. This study clarifies ALDH1A3 impacts on glioblastoma stem cells by modelling ALDH1A3 expression in an otherwise invariable genetic background with consideration of the impacts of inherent plasticity and proliferative changes associated with transitions between cell states. Our main finding is that ALDH1A3 exerts cell-state dependent impact on proliferation of glioblastoma stem cells. We provide evidence that ALDH1A3 augments radiation-induced inhibition of self-renewal and promotes the proliferation of differentiated GSC progenies. Congruent effects ALDH1A3 and radiation on self-renewal and proliferation provides a framework for promoting glioblastoma growth under radiation treatment.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13211802\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cells13211802","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
ALDH1A3 Contributes to Radiation-Induced Inhibition of Self-Renewal and Promotes Proliferative Activity of p53-Deficient Glioblastoma Stem Cells at the Onset of Differentiation.
ALDH1A3 is a marker for mesenchymal glioblastomas characterized by a greater degree of aggressiveness compared to other major subtypes. ADH1A3 has been implicated in the regulation of stemness and radioresistance mediated by glioblastoma stem cells. Mechanisms by which ALDH1A3 promotes malignant progression of glioblastoma remain elusive posing a challenge for rationalization of ALDH1A3 targeting in glioblastoma, and it is also unclear how ALDH1A3 regulates glioblastoma cells stemness. Usage of different models with diverse genetic backgrounds and often unknown degree of stemness is one possible reason for discrepant views on the role of ALDH1A3 in glioblastoma stem cells. This study clarifies ALDH1A3 impacts on glioblastoma stem cells by modelling ALDH1A3 expression in an otherwise invariable genetic background with consideration of the impacts of inherent plasticity and proliferative changes associated with transitions between cell states. Our main finding is that ALDH1A3 exerts cell-state dependent impact on proliferation of glioblastoma stem cells. We provide evidence that ALDH1A3 augments radiation-induced inhibition of self-renewal and promotes the proliferation of differentiated GSC progenies. Congruent effects ALDH1A3 and radiation on self-renewal and proliferation provides a framework for promoting glioblastoma growth under radiation treatment.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.