José Teles de Oliveira-Neto, Juliano de P Souza, Daniel Rodrigues, Mirele R Machado, Juliano V Alves, Paula R Barros, Alecsander F Bressan, Josiane F Silva, Tiago J Costa, Rafael M Costa, Daniella Bonaventura, Eurico de Arruda-Neto, Rita C Tostes, Emiliana P Abrão
{"title":"急性基孔肯雅病毒感染通过直接破坏内皮细胞的氧化还原信号诱发血管功能障碍","authors":"José Teles de Oliveira-Neto, Juliano de P Souza, Daniel Rodrigues, Mirele R Machado, Juliano V Alves, Paula R Barros, Alecsander F Bressan, Josiane F Silva, Tiago J Costa, Rafael M Costa, Daniella Bonaventura, Eurico de Arruda-Neto, Rita C Tostes, Emiliana P Abrão","doi":"10.3390/cells13211770","DOIUrl":null,"url":null,"abstract":"<p><p>Chikungunya virus (CHIKV) infection is characterized by febrile illness, severe joint pain, myalgia, and cardiovascular complications. Given that CHIKV stimulates reactive oxygen species (ROS) and pro- and anti-inflammatory cytokines, events that disrupt vascular homeostasis, we hypothesized that CHIKV induces arterial dysfunction by directly impacting redox-related mechanisms in vascular cells. Wild-type (WT) and iNOS <i>knockout</i> (iNOS<sup>-/-</sup>) mice were administered either CHIKV (1.0 × 10<sup>6</sup> PFU/µL) or Mock vehicle via the intracaudal route. In vivo, CHIKV infection induced vascular dysfunction (assessed by a wire myograph), decreased systolic blood pressure (tail-cuff plethysmography), increased IL-6 and IFN-γ, but not TNF-α levels (determined by ELISA), and increased protein content by Western blot. Marked contractile hyporesponsiveness to phenylephrine was observed 48 h post-infection, which was restored by endothelium removal. L-NAME, 1400W, Tiron, and iNOS gene deletion prevented phenylephrine hyporesponsiveness. CHIKV infection increased vascular nitrite concentration (Griess reaction) and superoxide anion (O<sub>2</sub><sup>•-</sup>) generation (lucigenin chemiluminescence), and decreased hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>, by Amplex Red) levels 48 h post-infection, alongside increased TBARS levels. In vitro, CHIKV infected endothelial cells (EA.hy926) and upregulated ICAM-1 and iNOS protein expression (determined by Western blot). These data support the conclusion that CHIKV-induced alterations in vascular ROS/NF-kB/iNOS/NO signaling potentially contribute to cardiovascular events associated with Chikungunya infection.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Acute Chikungunya Infection Induces Vascular Dysfunction by Directly Disrupting Redox Signaling in Endothelial Cells.\",\"authors\":\"José Teles de Oliveira-Neto, Juliano de P Souza, Daniel Rodrigues, Mirele R Machado, Juliano V Alves, Paula R Barros, Alecsander F Bressan, Josiane F Silva, Tiago J Costa, Rafael M Costa, Daniella Bonaventura, Eurico de Arruda-Neto, Rita C Tostes, Emiliana P Abrão\",\"doi\":\"10.3390/cells13211770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chikungunya virus (CHIKV) infection is characterized by febrile illness, severe joint pain, myalgia, and cardiovascular complications. Given that CHIKV stimulates reactive oxygen species (ROS) and pro- and anti-inflammatory cytokines, events that disrupt vascular homeostasis, we hypothesized that CHIKV induces arterial dysfunction by directly impacting redox-related mechanisms in vascular cells. Wild-type (WT) and iNOS <i>knockout</i> (iNOS<sup>-/-</sup>) mice were administered either CHIKV (1.0 × 10<sup>6</sup> PFU/µL) or Mock vehicle via the intracaudal route. In vivo, CHIKV infection induced vascular dysfunction (assessed by a wire myograph), decreased systolic blood pressure (tail-cuff plethysmography), increased IL-6 and IFN-γ, but not TNF-α levels (determined by ELISA), and increased protein content by Western blot. Marked contractile hyporesponsiveness to phenylephrine was observed 48 h post-infection, which was restored by endothelium removal. L-NAME, 1400W, Tiron, and iNOS gene deletion prevented phenylephrine hyporesponsiveness. CHIKV infection increased vascular nitrite concentration (Griess reaction) and superoxide anion (O<sub>2</sub><sup>•-</sup>) generation (lucigenin chemiluminescence), and decreased hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>, by Amplex Red) levels 48 h post-infection, alongside increased TBARS levels. In vitro, CHIKV infected endothelial cells (EA.hy926) and upregulated ICAM-1 and iNOS protein expression (determined by Western blot). These data support the conclusion that CHIKV-induced alterations in vascular ROS/NF-kB/iNOS/NO signaling potentially contribute to cardiovascular events associated with Chikungunya infection.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13211770\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cells13211770","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Acute Chikungunya Infection Induces Vascular Dysfunction by Directly Disrupting Redox Signaling in Endothelial Cells.
Chikungunya virus (CHIKV) infection is characterized by febrile illness, severe joint pain, myalgia, and cardiovascular complications. Given that CHIKV stimulates reactive oxygen species (ROS) and pro- and anti-inflammatory cytokines, events that disrupt vascular homeostasis, we hypothesized that CHIKV induces arterial dysfunction by directly impacting redox-related mechanisms in vascular cells. Wild-type (WT) and iNOS knockout (iNOS-/-) mice were administered either CHIKV (1.0 × 106 PFU/µL) or Mock vehicle via the intracaudal route. In vivo, CHIKV infection induced vascular dysfunction (assessed by a wire myograph), decreased systolic blood pressure (tail-cuff plethysmography), increased IL-6 and IFN-γ, but not TNF-α levels (determined by ELISA), and increased protein content by Western blot. Marked contractile hyporesponsiveness to phenylephrine was observed 48 h post-infection, which was restored by endothelium removal. L-NAME, 1400W, Tiron, and iNOS gene deletion prevented phenylephrine hyporesponsiveness. CHIKV infection increased vascular nitrite concentration (Griess reaction) and superoxide anion (O2•-) generation (lucigenin chemiluminescence), and decreased hydrogen peroxide (H2O2, by Amplex Red) levels 48 h post-infection, alongside increased TBARS levels. In vitro, CHIKV infected endothelial cells (EA.hy926) and upregulated ICAM-1 and iNOS protein expression (determined by Western blot). These data support the conclusion that CHIKV-induced alterations in vascular ROS/NF-kB/iNOS/NO signaling potentially contribute to cardiovascular events associated with Chikungunya infection.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.