对 GPCR-arrestin复合物的分子认识取得进展。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ivana Petrovic, Stephan Grzesiek, Polina Isaikina
{"title":"对 GPCR-arrestin复合物的分子认识取得进展。","authors":"Ivana Petrovic, Stephan Grzesiek, Polina Isaikina","doi":"10.1042/BST20240170","DOIUrl":null,"url":null,"abstract":"<p><p>Arrestins are essential proteins for the regulation of G protein-coupled receptors (GPCRs). They mediate GPCR desensitization after the activated receptor has been phosphorylated by G protein receptor kinases (GRKs). In addition, GPCR-arrestin interactions may trigger signaling pathways that are distinct and independent from G proteins. The non-visual GPCRs encompass hundreds of receptors with varying phosphorylation patterns and amino acid sequences, which are regulated by only two human non-visual arrestin isoforms. This review describes recent findings on GPCR-arrestin complexes, obtained by structural techniques, biophysical, biochemical, and cellular assays. The solved structures of complete GPCR-arrestin complexes are of limited resolution ranging from 3.2 to 4.7 Å and reveal a high variability in the relative receptor-arrestin orientation. In contrast, biophysical and functional data indicate that arrestin recruitment, activation and GPCR-arrestin complex stability depend on the receptor phosphosite sequence patterns and density. At present, there is still a manifest lack of high-resolution structural and dynamical information on the interactions of native GPCRs with both GRKs and arrestins, which could provide a detailed molecular understanding of the genesis of receptor phosphorylation patterns and the specificity GPCR-arrestin interactions. Such insights seem crucial for progress in the rational design of advanced, arrestin-specific therapeutics.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in the molecular understanding of GPCR-arrestin complexes.\",\"authors\":\"Ivana Petrovic, Stephan Grzesiek, Polina Isaikina\",\"doi\":\"10.1042/BST20240170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arrestins are essential proteins for the regulation of G protein-coupled receptors (GPCRs). They mediate GPCR desensitization after the activated receptor has been phosphorylated by G protein receptor kinases (GRKs). In addition, GPCR-arrestin interactions may trigger signaling pathways that are distinct and independent from G proteins. The non-visual GPCRs encompass hundreds of receptors with varying phosphorylation patterns and amino acid sequences, which are regulated by only two human non-visual arrestin isoforms. This review describes recent findings on GPCR-arrestin complexes, obtained by structural techniques, biophysical, biochemical, and cellular assays. The solved structures of complete GPCR-arrestin complexes are of limited resolution ranging from 3.2 to 4.7 Å and reveal a high variability in the relative receptor-arrestin orientation. In contrast, biophysical and functional data indicate that arrestin recruitment, activation and GPCR-arrestin complex stability depend on the receptor phosphosite sequence patterns and density. At present, there is still a manifest lack of high-resolution structural and dynamical information on the interactions of native GPCRs with both GRKs and arrestins, which could provide a detailed molecular understanding of the genesis of receptor phosphorylation patterns and the specificity GPCR-arrestin interactions. Such insights seem crucial for progress in the rational design of advanced, arrestin-specific therapeutics.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20240170\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20240170","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Arrestins 是调节 G 蛋白偶联受体(GPCR)的基本蛋白。在激活的受体被 G 蛋白受体激酶(GRKs)磷酸化后,它们会介导 GPCR 脱敏。此外,GPCR-arrestin 相互作用可能会触发独立于 G 蛋白的不同信号通路。非可视 GPCR 包括数百种受体,其磷酸化模式和氨基酸序列各不相同,而这些受体仅受两种人类非可视捕获素异构体的调控。本综述介绍了通过结构技术、生物物理、生物化学和细胞检测获得的有关 GPCR-arrestin 复合物的最新发现。完整的 GPCR-阿restin复合物的结构解出分辨率有限,从 3.2 Å 到 4.7 Å 不等,并且揭示了受体-阿restin 相对方向的高度可变性。相反,生物物理和功能数据表明,捕获素的招募、激活和 GPCR-捕获素复合物的稳定性取决于受体磷酸化序列模式和密度。目前,关于原生 GPCR 与 GRKs 和 arrestin 的相互作用,仍然明显缺乏高分辨率的结构和动态信息,而这些信息可以让人们从分子角度详细了解受体磷酸化模式的成因以及 GPCR 与 arrestin 相互作用的特异性。这些见解对于合理设计先进的捕集素特异性疗法似乎至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in the molecular understanding of GPCR-arrestin complexes.

Arrestins are essential proteins for the regulation of G protein-coupled receptors (GPCRs). They mediate GPCR desensitization after the activated receptor has been phosphorylated by G protein receptor kinases (GRKs). In addition, GPCR-arrestin interactions may trigger signaling pathways that are distinct and independent from G proteins. The non-visual GPCRs encompass hundreds of receptors with varying phosphorylation patterns and amino acid sequences, which are regulated by only two human non-visual arrestin isoforms. This review describes recent findings on GPCR-arrestin complexes, obtained by structural techniques, biophysical, biochemical, and cellular assays. The solved structures of complete GPCR-arrestin complexes are of limited resolution ranging from 3.2 to 4.7 Å and reveal a high variability in the relative receptor-arrestin orientation. In contrast, biophysical and functional data indicate that arrestin recruitment, activation and GPCR-arrestin complex stability depend on the receptor phosphosite sequence patterns and density. At present, there is still a manifest lack of high-resolution structural and dynamical information on the interactions of native GPCRs with both GRKs and arrestins, which could provide a detailed molecular understanding of the genesis of receptor phosphorylation patterns and the specificity GPCR-arrestin interactions. Such insights seem crucial for progress in the rational design of advanced, arrestin-specific therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信