新型 Ag/Bi/Bi2O2CO3 光催化剂在可见光照射下可有效去除水中的抗生素耐药菌和四环素。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Suo Wang, Changyu Li, Huanshun Yin, Bin Gao, Zhengkun Yu, Yunlei Zhou, Jun Wang, Hongxia Xu, Jichun Wu, Yuanyuan Sun
{"title":"新型 Ag/Bi/Bi2O2CO3 光催化剂在可见光照射下可有效去除水中的抗生素耐药菌和四环素。","authors":"Suo Wang, Changyu Li, Huanshun Yin, Bin Gao, Zhengkun Yu, Yunlei Zhou, Jun Wang, Hongxia Xu, Jichun Wu, Yuanyuan Sun","doi":"10.1016/j.envres.2024.120313","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, achieving dual applications of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>-based photocatalysts in photocatalytic degradation and sterilization under visible-light conditions is challenging. In this study, a novel Ag/Bi/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> visible-light photocatalyst with bimetallic doping and rich oxygen vacancies was successfully synthesized using a one-pot hydrothermal crystallization method. The existence of oxygen vacancies was verified by X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR) analysis. The experimental results showed that Ag/Bi/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> killed ∼100% (log 7) of antibiotic-resistant Escherichia coli (AR-E. coli) within 60 min and degraded 83.81% of tetracycline (TC) within 180 min under visible light irradiation. Moreover, Ag/Bi/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> can still remove 61.07% of TC in water after 5 cycles, showing excellent photocatalytic cycle stability and reusability. The possible degradation pathway of TC was determined by liquid chromatography-mass spectrometry. It was found that the main active substances in the photocatalytic disinfection of AR-E. coli were <sup>1</sup>O<sub>2</sub>, h<sup>+</sup>, and ·OH, while <sup>1</sup>O<sub>2</sub> was the dominant active species in the photocatalytic degradation of TC. This study presents a promising Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>-based visible light photocatalyst for treating both antibiotics (TC) and antibiotic-resistant bacteria (AR-E. coli) in water.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel Ag/Bi/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> photocatalyst effectively removes antibiotic-resistant bacteria and tetracycline from water under visible light irradiation.\",\"authors\":\"Suo Wang, Changyu Li, Huanshun Yin, Bin Gao, Zhengkun Yu, Yunlei Zhou, Jun Wang, Hongxia Xu, Jichun Wu, Yuanyuan Sun\",\"doi\":\"10.1016/j.envres.2024.120313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, achieving dual applications of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>-based photocatalysts in photocatalytic degradation and sterilization under visible-light conditions is challenging. In this study, a novel Ag/Bi/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> visible-light photocatalyst with bimetallic doping and rich oxygen vacancies was successfully synthesized using a one-pot hydrothermal crystallization method. The existence of oxygen vacancies was verified by X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR) analysis. The experimental results showed that Ag/Bi/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> killed ∼100% (log 7) of antibiotic-resistant Escherichia coli (AR-E. coli) within 60 min and degraded 83.81% of tetracycline (TC) within 180 min under visible light irradiation. Moreover, Ag/Bi/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> can still remove 61.07% of TC in water after 5 cycles, showing excellent photocatalytic cycle stability and reusability. The possible degradation pathway of TC was determined by liquid chromatography-mass spectrometry. It was found that the main active substances in the photocatalytic disinfection of AR-E. coli were <sup>1</sup>O<sub>2</sub>, h<sup>+</sup>, and ·OH, while <sup>1</sup>O<sub>2</sub> was the dominant active species in the photocatalytic degradation of TC. This study presents a promising Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>-based visible light photocatalyst for treating both antibiotics (TC) and antibiotic-resistant bacteria (AR-E. coli) in water.</p>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envres.2024.120313\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120313","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目前,实现基于 Bi2O2CO3 的光催化剂在可见光条件下光催化降解和杀菌的双重应用具有挑战性。本研究采用一锅水热结晶法成功合成了一种具有双金属掺杂和丰富氧空位的新型 Ag/Bi/Bi2O2CO3 可见光光催化剂。通过 X 射线光电子能谱(XPS)和电子自旋共振(ESR)分析验证了氧空位的存在。实验结果表明,在可见光照射下,Ag/Bi/Bi2O2CO3 在 60 分钟内杀死了 ∼100% (log 7) 的抗生素耐药大肠杆菌(AR-E. coli),在 180 分钟内降解了 83.81% 的四环素(TC)。此外,Ag/Bi/Bi2O2CO3 在 5 次循环后仍能去除水中 61.07% 的四环素,显示出良好的光催化循环稳定性和可重复使用性。液相色谱-质谱法测定了 TC 的可能降解途径。研究发现,光催化消毒 AR-E. coli 的主要活性物质是 1O2、h+ 和 -OH,而 1O2 是光催化降解 TC 的主要活性物种。本研究提出了一种很有前景的基于 Bi2O2CO3 的可见光光催化剂,可用于处理水中的抗生素(TC)和抗生素耐药菌(AR-E. coli)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel Ag/Bi/Bi2O2CO3 photocatalyst effectively removes antibiotic-resistant bacteria and tetracycline from water under visible light irradiation.

Currently, achieving dual applications of Bi2O2CO3-based photocatalysts in photocatalytic degradation and sterilization under visible-light conditions is challenging. In this study, a novel Ag/Bi/Bi2O2CO3 visible-light photocatalyst with bimetallic doping and rich oxygen vacancies was successfully synthesized using a one-pot hydrothermal crystallization method. The existence of oxygen vacancies was verified by X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR) analysis. The experimental results showed that Ag/Bi/Bi2O2CO3 killed ∼100% (log 7) of antibiotic-resistant Escherichia coli (AR-E. coli) within 60 min and degraded 83.81% of tetracycline (TC) within 180 min under visible light irradiation. Moreover, Ag/Bi/Bi2O2CO3 can still remove 61.07% of TC in water after 5 cycles, showing excellent photocatalytic cycle stability and reusability. The possible degradation pathway of TC was determined by liquid chromatography-mass spectrometry. It was found that the main active substances in the photocatalytic disinfection of AR-E. coli were 1O2, h+, and ·OH, while 1O2 was the dominant active species in the photocatalytic degradation of TC. This study presents a promising Bi2O2CO3-based visible light photocatalyst for treating both antibiotics (TC) and antibiotic-resistant bacteria (AR-E. coli) in water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信