聚糖介导的中稀土元素选择性分离。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sungjin Jeon, Tyler L. Odom, Cole A. Williams, Cassandra E. Callmann
{"title":"聚糖介导的中稀土元素选择性分离。","authors":"Sungjin Jeon,&nbsp;Tyler L. Odom,&nbsp;Cole A. Williams,&nbsp;Cassandra E. Callmann","doi":"10.1002/anie.202417505","DOIUrl":null,"url":null,"abstract":"<p>The selective separation of rare earth elements (REEs) remains a formidable challenge due to limitations of current methodologies, which struggle to achieve the separation efficiency required for their critical industrial applications. Middle REEs (MREEs), characterized by their intermediate ionic radii, are particularly challenging to separate without size-specific trapping mechanisms. In this study, we report a novel approach that synergistically combines heavy metal sequestration with size-selective separation, utilizing negatively charged glycopolymers to achieve the targeted separation of MREEs. We systematically investigated the binding affinities of these glycopolymers for various REEs, focusing on the selective isolation of MREEs through a controlled variation of glycopolymer properties, including degree of polymerization (DP) and charge density. Our findings reveal a distinctive U-shaped selectivity profile, with a marked preference for Samarium (Sm) and Europium (Eu) over other REEs such as Cerium (Ce), Gadolinium (Gd), and Holmium (Ho). This selectivity underscores the potential for designing tailored separation processes optimized for specific MREEs. Moreover, enrichment experiments demonstrated the practical viability of our methodology, achieving over 10 % selectivity for Sm in a Ce/Sm mixture with a 10 : 1 Ce/Sm ratio, a trend that held for Sm in a Ho/Sm Mixture with a 10 : 1 Ho/Sm ratio, indicating significant selectivity over both light and heavy REEs. A subsequent separation experiment using a 1 : 1 Ce/Sm mixture yielded a 15 % enrichment after only five passes through a filter containing minimal amounts of glycopolymer, highlighting the promise of further refinement for enhanced separation efficiency.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 6","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycopolymer-Mediated Selective Separation of Middle Rare Earth Elements\",\"authors\":\"Sungjin Jeon,&nbsp;Tyler L. Odom,&nbsp;Cole A. Williams,&nbsp;Cassandra E. Callmann\",\"doi\":\"10.1002/anie.202417505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The selective separation of rare earth elements (REEs) remains a formidable challenge due to limitations of current methodologies, which struggle to achieve the separation efficiency required for their critical industrial applications. Middle REEs (MREEs), characterized by their intermediate ionic radii, are particularly challenging to separate without size-specific trapping mechanisms. In this study, we report a novel approach that synergistically combines heavy metal sequestration with size-selective separation, utilizing negatively charged glycopolymers to achieve the targeted separation of MREEs. We systematically investigated the binding affinities of these glycopolymers for various REEs, focusing on the selective isolation of MREEs through a controlled variation of glycopolymer properties, including degree of polymerization (DP) and charge density. Our findings reveal a distinctive U-shaped selectivity profile, with a marked preference for Samarium (Sm) and Europium (Eu) over other REEs such as Cerium (Ce), Gadolinium (Gd), and Holmium (Ho). This selectivity underscores the potential for designing tailored separation processes optimized for specific MREEs. Moreover, enrichment experiments demonstrated the practical viability of our methodology, achieving over 10 % selectivity for Sm in a Ce/Sm mixture with a 10 : 1 Ce/Sm ratio, a trend that held for Sm in a Ho/Sm Mixture with a 10 : 1 Ho/Sm ratio, indicating significant selectivity over both light and heavy REEs. A subsequent separation experiment using a 1 : 1 Ce/Sm mixture yielded a 15 % enrichment after only five passes through a filter containing minimal amounts of glycopolymer, highlighting the promise of further refinement for enhanced separation efficiency.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 6\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417505\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417505","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

稀土元素(REEs)的选择性分离,尤其是具有中间离子半径的中间稀土元素(MREEs)的选择性分离,给目前的方法带来了巨大挑战。在本研究中,我们介绍了一种利用带负电荷的聚糖进行 MREEs 尺寸特异性分离的新方法。通过改变聚糖聚合物的特性(如聚合度(DP)和电荷密度),我们获得了明显的 U 型选择性曲线,钐(Sm)和铕(Eu)明显优于铈(Ce)、钆(Gd)和钬(Ho)等其他稀土元素。富集实验证明了这种方法的实用潜力,在 Ce/Sm 和 Ho/Sm 混合物(10:1 比例)中,Sm 的选择性超过了 10%。此外,在使用 1:1 Ce/Sm 混合物进行分离实验时,经过五个过滤周期后,富集率达到了 15%,而糖聚合物的含量却极低,这充分证明了该方法的有效性。这项工作凸显了基于糖聚合物的定向 MREE 分离策略的前景,为改进 REE 应用中的分离过程提供了一种高效、可调整的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Glycopolymer-Mediated Selective Separation of Middle Rare Earth Elements

Glycopolymer-Mediated Selective Separation of Middle Rare Earth Elements

The selective separation of rare earth elements (REEs) remains a formidable challenge due to limitations of current methodologies, which struggle to achieve the separation efficiency required for their critical industrial applications. Middle REEs (MREEs), characterized by their intermediate ionic radii, are particularly challenging to separate without size-specific trapping mechanisms. In this study, we report a novel approach that synergistically combines heavy metal sequestration with size-selective separation, utilizing negatively charged glycopolymers to achieve the targeted separation of MREEs. We systematically investigated the binding affinities of these glycopolymers for various REEs, focusing on the selective isolation of MREEs through a controlled variation of glycopolymer properties, including degree of polymerization (DP) and charge density. Our findings reveal a distinctive U-shaped selectivity profile, with a marked preference for Samarium (Sm) and Europium (Eu) over other REEs such as Cerium (Ce), Gadolinium (Gd), and Holmium (Ho). This selectivity underscores the potential for designing tailored separation processes optimized for specific MREEs. Moreover, enrichment experiments demonstrated the practical viability of our methodology, achieving over 10 % selectivity for Sm in a Ce/Sm mixture with a 10 : 1 Ce/Sm ratio, a trend that held for Sm in a Ho/Sm Mixture with a 10 : 1 Ho/Sm ratio, indicating significant selectivity over both light and heavy REEs. A subsequent separation experiment using a 1 : 1 Ce/Sm mixture yielded a 15 % enrichment after only five passes through a filter containing minimal amounts of glycopolymer, highlighting the promise of further refinement for enhanced separation efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信