{"title":"药物诱导的氯喹自组装纳米囊,使 MDR 肿瘤对盐酸米托蒽醌敏感。","authors":"Juan Wang, Xinchen Zhao, Liyan Qiu","doi":"10.1016/j.colsurfb.2024.114358","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug resistance (MDR) is an incidental trouble post-chemotherapy, necessitating innovative therapeutic strategies. This study explores the potential of chloroquine (CQ) as a sensitizer for mitoxantrone hydrochloride (MitH) in drug-resistant tumors and introduces a novel pH-responsive drug-induced self-assembly nanovesicle (DIV) based on an amphiphilic polyphosphonitrile (PPAP) for the co-delivery of MitH and CQ. PPAP cannot self-assemble into nanovesicles alone, but when a certain amount of MitH was added, the multiple non-covalent interactions between PPAP and MitH contributed to the formation of DIV, which exactly improved the co-loading content of MitH and CQ to a large extent. CQ prevents MitH efflux and autophagy to reverse MitH resistance. Given the synergy between MitH and CQ at a 1:2 mass ratio with a combination index of 0.40 in K562/ADR cells, MitH and CQ co-loaded DIV (MC-DIV) is constructed and demonstrates a sensitivity index of 7.1 on cytotoxicity compared to free MitH. Furthermore, MC-DIV achieves extended circulation time, synchronous dual-drug delivery, and improved tumor targeting following systemic administration, resulting in exceptional antitumor efficacy in K562/ADR xenograft models with a tumor inhibition rate of 83.0 %. Overall, MC-DIV provides a viable method to maximize the loading capacity of nanocarriers, and potentially serves as a promising formulation for various MitH-resistant tumors.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114358"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug-induced self-assembled nanovesicles for chloroquine to sensitize MDR tumors to mitoxantrone hydrochloride.\",\"authors\":\"Juan Wang, Xinchen Zhao, Liyan Qiu\",\"doi\":\"10.1016/j.colsurfb.2024.114358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multidrug resistance (MDR) is an incidental trouble post-chemotherapy, necessitating innovative therapeutic strategies. This study explores the potential of chloroquine (CQ) as a sensitizer for mitoxantrone hydrochloride (MitH) in drug-resistant tumors and introduces a novel pH-responsive drug-induced self-assembly nanovesicle (DIV) based on an amphiphilic polyphosphonitrile (PPAP) for the co-delivery of MitH and CQ. PPAP cannot self-assemble into nanovesicles alone, but when a certain amount of MitH was added, the multiple non-covalent interactions between PPAP and MitH contributed to the formation of DIV, which exactly improved the co-loading content of MitH and CQ to a large extent. CQ prevents MitH efflux and autophagy to reverse MitH resistance. Given the synergy between MitH and CQ at a 1:2 mass ratio with a combination index of 0.40 in K562/ADR cells, MitH and CQ co-loaded DIV (MC-DIV) is constructed and demonstrates a sensitivity index of 7.1 on cytotoxicity compared to free MitH. Furthermore, MC-DIV achieves extended circulation time, synchronous dual-drug delivery, and improved tumor targeting following systemic administration, resulting in exceptional antitumor efficacy in K562/ADR xenograft models with a tumor inhibition rate of 83.0 %. Overall, MC-DIV provides a viable method to maximize the loading capacity of nanocarriers, and potentially serves as a promising formulation for various MitH-resistant tumors.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"245 \",\"pages\":\"114358\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114358\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114358","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Drug-induced self-assembled nanovesicles for chloroquine to sensitize MDR tumors to mitoxantrone hydrochloride.
Multidrug resistance (MDR) is an incidental trouble post-chemotherapy, necessitating innovative therapeutic strategies. This study explores the potential of chloroquine (CQ) as a sensitizer for mitoxantrone hydrochloride (MitH) in drug-resistant tumors and introduces a novel pH-responsive drug-induced self-assembly nanovesicle (DIV) based on an amphiphilic polyphosphonitrile (PPAP) for the co-delivery of MitH and CQ. PPAP cannot self-assemble into nanovesicles alone, but when a certain amount of MitH was added, the multiple non-covalent interactions between PPAP and MitH contributed to the formation of DIV, which exactly improved the co-loading content of MitH and CQ to a large extent. CQ prevents MitH efflux and autophagy to reverse MitH resistance. Given the synergy between MitH and CQ at a 1:2 mass ratio with a combination index of 0.40 in K562/ADR cells, MitH and CQ co-loaded DIV (MC-DIV) is constructed and demonstrates a sensitivity index of 7.1 on cytotoxicity compared to free MitH. Furthermore, MC-DIV achieves extended circulation time, synchronous dual-drug delivery, and improved tumor targeting following systemic administration, resulting in exceptional antitumor efficacy in K562/ADR xenograft models with a tumor inhibition rate of 83.0 %. Overall, MC-DIV provides a viable method to maximize the loading capacity of nanocarriers, and potentially serves as a promising formulation for various MitH-resistant tumors.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.