{"title":"结构-功能一体化自抗菌含铜铝合金的新见解:赋予铝合金新功能。","authors":"Zhuanzhuan Song, Ying Cai, Xin Li, Ying-Chao Zhao, Dengfeng Yin, Andrej Atrens, Ming-Chun Zhao","doi":"10.1039/d4mh00770k","DOIUrl":null,"url":null,"abstract":"<p><p>Contact infection by bacteria and viruses is a serious concern to human health. The increasing occurrence of public health problems has stimulated the urgent need for the development of antibacterial materials. Al alloys are the fastest-growing mass-produced material group, a prerequisite for the lightweight design of vehicles, food containers and storage, as well as civil-engineering structures. In this work, the structure-function-integrated concept was used to design and produce self-antibacterial Al-<i>x</i>Cu (<i>x</i> = 2.8 and 5.7) alloys for the first time ever. The antibacterial tests indicated that Al-2.8Cu and Al-5.7Cu alloys provided a stable and efficient bacteriostatic rate against <i>S. aureus</i> and <i>E. coli</i>, which was 87% for Al-2.8Cu and 100% for Al-5.7Cu against <i>S. aureus</i> at 24 h, and 89% for Al-2.8Cu and 94% for Al-5.7Cu against <i>E. coli</i> at 24 h. The antibacterial effect was similar to the commonly-used antibacterial materials with a similar Cu content. Furthermore, the mechanical properties and corrosion resistance of Al-2.8Cu and Al-5.7Cu were comparable to those of the current commonly-used commercial casting Al-Cu alloys. Structural insights into the performance and biomedical function by Cu-rich precipitates provided understanding of the mechanisms of these structure-function-integrated self-antibacterial Cu-containing Al alloys: (i) the Cu-rich precipitates produced strengthening, and (ii) the immediate contact with Cu-rich precipitates and the Cu<sup>2+</sup> caused a synergistic action in improving antibacterial activity. This work gives Al alloys a new function and inspires fresh insights into structure-function-integrated antibacterial Al alloys.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fresh insights into structure-function-integrated self-antibacterial Cu-containing Al alloys: giving Al alloys a new function.\",\"authors\":\"Zhuanzhuan Song, Ying Cai, Xin Li, Ying-Chao Zhao, Dengfeng Yin, Andrej Atrens, Ming-Chun Zhao\",\"doi\":\"10.1039/d4mh00770k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contact infection by bacteria and viruses is a serious concern to human health. The increasing occurrence of public health problems has stimulated the urgent need for the development of antibacterial materials. Al alloys are the fastest-growing mass-produced material group, a prerequisite for the lightweight design of vehicles, food containers and storage, as well as civil-engineering structures. In this work, the structure-function-integrated concept was used to design and produce self-antibacterial Al-<i>x</i>Cu (<i>x</i> = 2.8 and 5.7) alloys for the first time ever. The antibacterial tests indicated that Al-2.8Cu and Al-5.7Cu alloys provided a stable and efficient bacteriostatic rate against <i>S. aureus</i> and <i>E. coli</i>, which was 87% for Al-2.8Cu and 100% for Al-5.7Cu against <i>S. aureus</i> at 24 h, and 89% for Al-2.8Cu and 94% for Al-5.7Cu against <i>E. coli</i> at 24 h. The antibacterial effect was similar to the commonly-used antibacterial materials with a similar Cu content. Furthermore, the mechanical properties and corrosion resistance of Al-2.8Cu and Al-5.7Cu were comparable to those of the current commonly-used commercial casting Al-Cu alloys. Structural insights into the performance and biomedical function by Cu-rich precipitates provided understanding of the mechanisms of these structure-function-integrated self-antibacterial Cu-containing Al alloys: (i) the Cu-rich precipitates produced strengthening, and (ii) the immediate contact with Cu-rich precipitates and the Cu<sup>2+</sup> caused a synergistic action in improving antibacterial activity. This work gives Al alloys a new function and inspires fresh insights into structure-function-integrated antibacterial Al alloys.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh00770k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh00770k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fresh insights into structure-function-integrated self-antibacterial Cu-containing Al alloys: giving Al alloys a new function.
Contact infection by bacteria and viruses is a serious concern to human health. The increasing occurrence of public health problems has stimulated the urgent need for the development of antibacterial materials. Al alloys are the fastest-growing mass-produced material group, a prerequisite for the lightweight design of vehicles, food containers and storage, as well as civil-engineering structures. In this work, the structure-function-integrated concept was used to design and produce self-antibacterial Al-xCu (x = 2.8 and 5.7) alloys for the first time ever. The antibacterial tests indicated that Al-2.8Cu and Al-5.7Cu alloys provided a stable and efficient bacteriostatic rate against S. aureus and E. coli, which was 87% for Al-2.8Cu and 100% for Al-5.7Cu against S. aureus at 24 h, and 89% for Al-2.8Cu and 94% for Al-5.7Cu against E. coli at 24 h. The antibacterial effect was similar to the commonly-used antibacterial materials with a similar Cu content. Furthermore, the mechanical properties and corrosion resistance of Al-2.8Cu and Al-5.7Cu were comparable to those of the current commonly-used commercial casting Al-Cu alloys. Structural insights into the performance and biomedical function by Cu-rich precipitates provided understanding of the mechanisms of these structure-function-integrated self-antibacterial Cu-containing Al alloys: (i) the Cu-rich precipitates produced strengthening, and (ii) the immediate contact with Cu-rich precipitates and the Cu2+ caused a synergistic action in improving antibacterial activity. This work gives Al alloys a new function and inspires fresh insights into structure-function-integrated antibacterial Al alloys.