Jingyun Ge , Hongyu Tian , Lin Li , Yunping Han , Jianwei Liu
{"title":"以脱水污泥为原料制备新型有机-无机复合污泥生物絮凝剂(SBF):特性、絮凝机理及在生活污水中的应用。","authors":"Jingyun Ge , Hongyu Tian , Lin Li , Yunping Han , Jianwei Liu","doi":"10.1016/j.biortech.2024.131747","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a green sludge bioflocculant (SBF) was prepared via chemical hydrolysis of dewatered sludge and applied to flocculation of domestic wastewater. The process parameters for the preparation of the SBF were 1.80 % hydrochloric acid concentration, 60 min extraction time, and 4000 r/min centrifugation speed. SBF is polymeric flocculant composed of organic and inorganic compounds. Flocculation efficiency reached 97.31 ± 0.26 % under optimal flocculation conditions. Charge neutralization promotes the surface adsorption, bridging and net trapping and sweeping of Fe (OH)<sub>3</sub>, Al (OH)<sub>3</sub> and active functional groups O–H/N–H and C = O in SBF, which together achieve efficient flocculation reactions. SBF had high efficiency and stable flocculation performance for phosphorus in urban domestic wastewater, and the concentration of TP in effluent was lower than 0.30 mg/L. Therefore, SBF prepared from dewatered sludge has efficient flocculation properties and is suitable for removing pollutant phosphorus, which has good application prospects in the field of wastewater treatment.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131747"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of a novel organic-inorganic composite sludge bioflocculant (SBF) from dewatered sludge as raw material: Characteristics, flocculation mechanism and application for domestic sewage\",\"authors\":\"Jingyun Ge , Hongyu Tian , Lin Li , Yunping Han , Jianwei Liu\",\"doi\":\"10.1016/j.biortech.2024.131747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a green sludge bioflocculant (SBF) was prepared via chemical hydrolysis of dewatered sludge and applied to flocculation of domestic wastewater. The process parameters for the preparation of the SBF were 1.80 % hydrochloric acid concentration, 60 min extraction time, and 4000 r/min centrifugation speed. SBF is polymeric flocculant composed of organic and inorganic compounds. Flocculation efficiency reached 97.31 ± 0.26 % under optimal flocculation conditions. Charge neutralization promotes the surface adsorption, bridging and net trapping and sweeping of Fe (OH)<sub>3</sub>, Al (OH)<sub>3</sub> and active functional groups O–H/N–H and C = O in SBF, which together achieve efficient flocculation reactions. SBF had high efficiency and stable flocculation performance for phosphorus in urban domestic wastewater, and the concentration of TP in effluent was lower than 0.30 mg/L. Therefore, SBF prepared from dewatered sludge has efficient flocculation properties and is suitable for removing pollutant phosphorus, which has good application prospects in the field of wastewater treatment.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131747\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424014512\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424014512","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Preparation of a novel organic-inorganic composite sludge bioflocculant (SBF) from dewatered sludge as raw material: Characteristics, flocculation mechanism and application for domestic sewage
In this work, a green sludge bioflocculant (SBF) was prepared via chemical hydrolysis of dewatered sludge and applied to flocculation of domestic wastewater. The process parameters for the preparation of the SBF were 1.80 % hydrochloric acid concentration, 60 min extraction time, and 4000 r/min centrifugation speed. SBF is polymeric flocculant composed of organic and inorganic compounds. Flocculation efficiency reached 97.31 ± 0.26 % under optimal flocculation conditions. Charge neutralization promotes the surface adsorption, bridging and net trapping and sweeping of Fe (OH)3, Al (OH)3 and active functional groups O–H/N–H and C = O in SBF, which together achieve efficient flocculation reactions. SBF had high efficiency and stable flocculation performance for phosphorus in urban domestic wastewater, and the concentration of TP in effluent was lower than 0.30 mg/L. Therefore, SBF prepared from dewatered sludge has efficient flocculation properties and is suitable for removing pollutant phosphorus, which has good application prospects in the field of wastewater treatment.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.