硫化物全固态电池中阴极溶液老化对高镍 NMC 阴极的影响。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuanshun Li, Yukio Cho, Jiyu Cai, Chanho Kim, Xueli Zheng, Wenda Wu, Amanda L Musgrove, Yifeng Su, Robert L Sacci, Zonghai Chen, Jagjit Nanda, Guang Yang
{"title":"硫化物全固态电池中阴极溶液老化对高镍 NMC 阴极的影响。","authors":"Yuanshun Li, Yukio Cho, Jiyu Cai, Chanho Kim, Xueli Zheng, Wenda Wu, Amanda L Musgrove, Yifeng Su, Robert L Sacci, Zonghai Chen, Jagjit Nanda, Guang Yang","doi":"10.1039/d4mh01211a","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfide solid-state electrolytes (SSEs) in all-solid-state batteries (SSBs) are recognized for their high ionic conductivity and inherent safety. The LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) cathode offers a high thermodynamic potential of approximately 3.8 V <i>vs.</i> Li/Li<sup>+</sup> and a theoretical specific capacity of 200 mA h g<sup>-1</sup>. However, the practical utilization of NMC811 in sulfide SSBs faces significant interfacial challenges. The oxidation instability of sulfide solid electrolytes against NMC811 and the formation of the cathode electrolyte interphase (CEI) during cycling lead to degradation and reduced cell performance. Volumetric changes in NMC during lithiation and de-lithiation can also cause detachment from sulfide electrolytes or internal particle cracking. Despite extensive galvanostatic cycling studies to address the issues, the calendar life of sulfide SSBs remains poorly understood. Here, we systematically studied the effects of four different catholytes on the calendar aging of LiNbO<sub>3</sub> (LNO)-coated NMC811, including Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl), Li<sub>3</sub>InCl<sub>6</sub>-Li<sub>6</sub>PS<sub>5</sub>Cl (LIC-LPSCl), Li<sub>3</sub>YCl<sub>6</sub>-Li<sub>6</sub>PS<sub>5</sub>Cl (LYC-LPSCl), and Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub> (LGPS). Our results indicate that LPSCl provides optimal capacity retention when stored at high state-of-charge (SOC) at room temperature, but the LIC-LPSCl cathode shows significant capacity degradation and chemical incompatibility. We also established an effective electrochemical calendar aging testing protocol to simulate daily usage, enabling quick inference of the calendar life of SSBs. This new testing approach accelerates materials selection strategies for high-nickel NMC composite cathodes in sulfide SSBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of catholyte aging on high-nickel NMC cathodes in sulfide all-solid-state batteries.\",\"authors\":\"Yuanshun Li, Yukio Cho, Jiyu Cai, Chanho Kim, Xueli Zheng, Wenda Wu, Amanda L Musgrove, Yifeng Su, Robert L Sacci, Zonghai Chen, Jagjit Nanda, Guang Yang\",\"doi\":\"10.1039/d4mh01211a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulfide solid-state electrolytes (SSEs) in all-solid-state batteries (SSBs) are recognized for their high ionic conductivity and inherent safety. The LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) cathode offers a high thermodynamic potential of approximately 3.8 V <i>vs.</i> Li/Li<sup>+</sup> and a theoretical specific capacity of 200 mA h g<sup>-1</sup>. However, the practical utilization of NMC811 in sulfide SSBs faces significant interfacial challenges. The oxidation instability of sulfide solid electrolytes against NMC811 and the formation of the cathode electrolyte interphase (CEI) during cycling lead to degradation and reduced cell performance. Volumetric changes in NMC during lithiation and de-lithiation can also cause detachment from sulfide electrolytes or internal particle cracking. Despite extensive galvanostatic cycling studies to address the issues, the calendar life of sulfide SSBs remains poorly understood. Here, we systematically studied the effects of four different catholytes on the calendar aging of LiNbO<sub>3</sub> (LNO)-coated NMC811, including Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl), Li<sub>3</sub>InCl<sub>6</sub>-Li<sub>6</sub>PS<sub>5</sub>Cl (LIC-LPSCl), Li<sub>3</sub>YCl<sub>6</sub>-Li<sub>6</sub>PS<sub>5</sub>Cl (LYC-LPSCl), and Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub> (LGPS). Our results indicate that LPSCl provides optimal capacity retention when stored at high state-of-charge (SOC) at room temperature, but the LIC-LPSCl cathode shows significant capacity degradation and chemical incompatibility. We also established an effective electrochemical calendar aging testing protocol to simulate daily usage, enabling quick inference of the calendar life of SSBs. This new testing approach accelerates materials selection strategies for high-nickel NMC composite cathodes in sulfide SSBs.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01211a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01211a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全固态电池(SSB)中的硫化物固态电解质(SSE)因其高离子传导性和内在安全性而广受认可。镍钴锰酸锂(LiNi0.8Mn0.1Co0.1O2,NMC811)阴极的热力学电位约为 3.8 V(相对于 Li/Li+),理论比容量为 200 mA h g-1。然而,在硫化物固态电池中实际使用 NMC811 面临着巨大的界面挑战。硫化物固体电解质对 NMC811 的氧化不稳定性以及阴极电解质间相(CEI)在循环过程中的形成会导致降解和电池性能降低。石化和脱石化过程中 NMC 的体积变化也会导致硫化物电解质脱落或内部颗粒开裂。尽管为解决这些问题进行了大量的电静态循环研究,但人们对硫化物 SSB 的日历寿命仍然知之甚少。在这里,我们系统地研究了四种不同的阴极溶质对铌酸锂 (LNO) 镀层 NMC811 的日历老化的影响,包括 Li6PS5Cl (LPSCl)、Li3InCl6-Li6PS5Cl (LIC-LPSCl)、Li3YCl6-Li6PS5Cl (LYC-LPSCl) 和 Li10GeP2S12 (LGPS)。我们的研究结果表明,LPSCl 在室温下以高充电状态(SOC)储存时可提供最佳的容量保持,但 LIC-LPSCl 阴极则显示出明显的容量衰减和化学不相容性。我们还建立了一个有效的电化学日历老化测试协议来模拟日常使用,从而能够快速推断 SSB 的日历寿命。这种新的测试方法加快了硫化物固态电池中高镍 NMC 复合阴极的材料选择策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of catholyte aging on high-nickel NMC cathodes in sulfide all-solid-state batteries.

Sulfide solid-state electrolytes (SSEs) in all-solid-state batteries (SSBs) are recognized for their high ionic conductivity and inherent safety. The LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode offers a high thermodynamic potential of approximately 3.8 V vs. Li/Li+ and a theoretical specific capacity of 200 mA h g-1. However, the practical utilization of NMC811 in sulfide SSBs faces significant interfacial challenges. The oxidation instability of sulfide solid electrolytes against NMC811 and the formation of the cathode electrolyte interphase (CEI) during cycling lead to degradation and reduced cell performance. Volumetric changes in NMC during lithiation and de-lithiation can also cause detachment from sulfide electrolytes or internal particle cracking. Despite extensive galvanostatic cycling studies to address the issues, the calendar life of sulfide SSBs remains poorly understood. Here, we systematically studied the effects of four different catholytes on the calendar aging of LiNbO3 (LNO)-coated NMC811, including Li6PS5Cl (LPSCl), Li3InCl6-Li6PS5Cl (LIC-LPSCl), Li3YCl6-Li6PS5Cl (LYC-LPSCl), and Li10GeP2S12 (LGPS). Our results indicate that LPSCl provides optimal capacity retention when stored at high state-of-charge (SOC) at room temperature, but the LIC-LPSCl cathode shows significant capacity degradation and chemical incompatibility. We also established an effective electrochemical calendar aging testing protocol to simulate daily usage, enabling quick inference of the calendar life of SSBs. This new testing approach accelerates materials selection strategies for high-nickel NMC composite cathodes in sulfide SSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信